Larxel commited on
Commit
5755d2f
·
1 Parent(s): 2035dec

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.73 +/- 0.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:523eac05161cd27888e4813be69fd08ceb5b82ec17584b073966d157542e8b0d
3
+ size 108094
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3d8e15f8b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3d8e162180>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681673830935508023,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYVDXPicymrtPdBA/YVDXPicymrtPdBA/YVDXPicymrtPdBA/YVDXPicymrtPdBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGWbOv+PvKz9vlao+9/4kP/atXT+Ua6u/bS0ZvZ5+t7+zzV62PA1pv2bZpr8k9o6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7qUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]]",
38
+ "desired_goal": "[[-1.6124908e+00 6.7162913e-01 3.3317134e-01]\n [ 6.4451545e-01 8.6593568e-01 -1.3392205e+00]\n [-3.7396837e-02 -1.4335515e+00 -3.3200311e-06]\n [-9.1035819e-01 -1.3035095e+00 -1.1168866e+00]]",
39
+ "observation": "[[ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADPgMvsQB9Twgqr491WfNPPHKvTywnRY+PLOCPGY6FT4IAoI+sTW0PTJyyT2ueZU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.13766497 0.02990807 0.09309793]\n [ 0.02507393 0.02316806 0.1470859 ]\n [ 0.01595461 0.14573058 0.25392175]\n [ 0.08799303 0.09836234 0.29194397]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItoE7UKe85L+UhpRSlIwBbJRLMowBdJRHQKcow5uIhyN1fZQoaAZoCWgPQwhuMqoM427gv5SGlFKUaBVLMmgWR0CnKIbEYO2BdX2UKGgGaAloD0MI/iYUIuCQ4L+UhpRSlGgVSzJoFkdApyhLKT0QLHV9lChoBmgJaA9DCPkx5q4lZPG/lIaUUpRoFUsyaBZHQKcoDgsK9f11fZQoaAZoCWgPQwglBRbAlAHpv5SGlFKUaBVLMmgWR0CnKpHHmzSkdX2UKGgGaAloD0MImRBzSdX26L+UhpRSlGgVSzJoFkdApypUry1/lXV9lChoBmgJaA9DCLZHb7iPXOe/lIaUUpRoFUsyaBZHQKcqGICU5dZ1fZQoaAZoCWgPQwgstklFY+3Sv5SGlFKUaBVLMmgWR0CnKdsr3CbddX2UKGgGaAloD0MIPnjt0obD5L+UhpRSlGgVSzJoFkdApyxhIlMRH3V9lChoBmgJaA9DCNyhYTHqWum/lIaUUpRoFUsyaBZHQKcsJBJI1+B1fZQoaAZoCWgPQwip+Sr52F3av5SGlFKUaBVLMmgWR0CnK+gtvn8sdX2UKGgGaAloD0MI3ZVdMLjmxr+UhpRSlGgVSzJoFkdApyuq+Yc/+3V9lChoBmgJaA9DCB8wD5nyYfK/lIaUUpRoFUsyaBZHQKcuOAWBSUF1fZQoaAZoCWgPQwg+A+rNqHn0v5SGlFKUaBVLMmgWR0CnLfsC1Z1WdX2UKGgGaAloD0MIqyAGuvaF6L+UhpRSlGgVSzJoFkdApy2/BDXvpnV9lChoBmgJaA9DCEOs/gjDAO2/lIaUUpRoFUsyaBZHQKctgYNRWLh1fZQoaAZoCWgPQwhIqBlSRfHxv5SGlFKUaBVLMmgWR0CnMBMIE8q4dX2UKGgGaAloD0MIHsGNlC2S27+UhpRSlGgVSzJoFkdApy/V7a7EpHV9lChoBmgJaA9DCAw6IXTQJdy/lIaUUpRoFUsyaBZHQKcvmgow22p1fZQoaAZoCWgPQwh3LLZJRWPcv5SGlFKUaBVLMmgWR0CnL1x3mmtRdX2UKGgGaAloD0MIhjsXRnpR0b+UhpRSlGgVSzJoFkdApzH6uZCv5nV9lChoBmgJaA9DCKClK9hGPM2/lIaUUpRoFUsyaBZHQKcxvNUwSJ11fZQoaAZoCWgPQwg+zF62nXbxv5SGlFKUaBVLMmgWR0CnMX/xc3VDdX2UKGgGaAloD0MITWiSWFLu5r+UhpRSlGgVSzJoFkdApzFBoPCl8HV9lChoBmgJaA9DCNb+zvboDdu/lIaUUpRoFUsyaBZHQKczFE+gUUR1fZQoaAZoCWgPQwiAuRYtQNvMv5SGlFKUaBVLMmgWR0CnMtZvtMPCdX2UKGgGaAloD0MInZ53Y0Fh6b+UhpRSlGgVSzJoFkdApzKZUHY6GXV9lChoBmgJaA9DCJD5gEBn0uW/lIaUUpRoFUsyaBZHQKcyWx2St/51fZQoaAZoCWgPQwiGOxdGelHSv5SGlFKUaBVLMmgWR0CnNESgf2bodX2UKGgGaAloD0MISMSUSKKX3L+UhpRSlGgVSzJoFkdApzQGzlcQiHV9lChoBmgJaA9DCB/Xhopx/vC/lIaUUpRoFUsyaBZHQKczy8s+V1R1fZQoaAZoCWgPQwh5Bg39E9znv5SGlFKUaBVLMmgWR0CnM45i/fwadX2UKGgGaAloD0MIYi8UsB2M0r+UhpRSlGgVSzJoFkdApzVhnUUfxXV9lChoBmgJaA9DCBIz+zxG+eK/lIaUUpRoFUsyaBZHQKc1I74i5d51fZQoaAZoCWgPQwhj8gaY+Y7jv5SGlFKUaBVLMmgWR0CnNObjkuHvdX2UKGgGaAloD0MINEsC1NSy5b+UhpRSlGgVSzJoFkdApzSorQPZqXV9lChoBmgJaA9DCCWWlLvPceW/lIaUUpRoFUsyaBZHQKc2db9If8x1fZQoaAZoCWgPQwjVrglpjUHnv5SGlFKUaBVLMmgWR0CnNjfhuO0cdX2UKGgGaAloD0MIZhL1gk9z6r+UhpRSlGgVSzJoFkdApzX63Zwn6XV9lChoBmgJaA9DCCEE5Euo4OO/lIaUUpRoFUsyaBZHQKc1vJdSl311fZQoaAZoCWgPQwjhJM0f09rfv5SGlFKUaBVLMmgWR0CnN4uktVaPdX2UKGgGaAloD0MIQ1VMpZ9w6b+UhpRSlGgVSzJoFkdApzdNygf2b3V9lChoBmgJaA9DCMZP4978hu2/lIaUUpRoFUsyaBZHQKc3EM+/xlR1fZQoaAZoCWgPQwhxWvCir6Dhv5SGlFKUaBVLMmgWR0CnNtJzLfUGdX2UKGgGaAloD0MItCJqos/H57+UhpRSlGgVSzJoFkdApziqc3EQ5HV9lChoBmgJaA9DCJBLHHkgMuG/lIaUUpRoFUsyaBZHQKc4bKujh1l1fZQoaAZoCWgPQwjohTsXRnrWv5SGlFKUaBVLMmgWR0CnOC/BnBcidX2UKGgGaAloD0MIz4HlCBnI4r+UhpRSlGgVSzJoFkdApzfxYV6/qXV9lChoBmgJaA9DCLgE4J9Speq/lIaUUpRoFUsyaBZHQKc5vusLfDV1fZQoaAZoCWgPQwg/kSdJ18zsv5SGlFKUaBVLMmgWR0CnOYEuxrzodX2UKGgGaAloD0MIsdzSakhc6b+UhpRSlGgVSzJoFkdApzlEM1CPZXV9lChoBmgJaA9DCDawVYLFYeK/lIaUUpRoFUsyaBZHQKc5BeBxxT91fZQoaAZoCWgPQwgZPEz75v7rv5SGlFKUaBVLMmgWR0CnOwIZhrnDdX2UKGgGaAloD0MI7ISX4NQH97+UhpRSlGgVSzJoFkdApzrERlHz6XV9lChoBmgJaA9DCPzIrUm3Jfa/lIaUUpRoFUsyaBZHQKc6h+n62v11fZQoaAZoCWgPQwheEmdF1ETwv5SGlFKUaBVLMmgWR0CnOkmFSKm9dX2UKGgGaAloD0MIRnu8kA4P77+UhpRSlGgVSzJoFkdApzwWhVU+93V9lChoBmgJaA9DCOBkG7gDdeO/lIaUUpRoFUsyaBZHQKc72MBIWgx1fZQoaAZoCWgPQwi78lmeB/fkv5SGlFKUaBVLMmgWR0CnO5uv+wTudX2UKGgGaAloD0MIuMoTCDsF8L+UhpRSlGgVSzJoFkdApztdWyTpxHV9lChoBmgJaA9DCMkh4uZUMuO/lIaUUpRoFUsyaBZHQKc9MXHim2t1fZQoaAZoCWgPQwhEwYwpWGPjv5SGlFKUaBVLMmgWR0CnPPN+kP+XdX2UKGgGaAloD0MIY3rCEg8o67+UhpRSlGgVSzJoFkdApzy2dNFjNXV9lChoBmgJaA9DCCoZAKq4ceK/lIaUUpRoFUsyaBZHQKc8eAfdRBN1fZQoaAZoCWgPQwgyjpHsEernv5SGlFKUaBVLMmgWR0CnPkvwNLDidX2UKGgGaAloD0MIJ1DEIoYd37+UhpRSlGgVSzJoFkdApz4OC04R3HV9lChoBmgJaA9DCAghIF9CBdy/lIaUUpRoFUsyaBZHQKc90N8VpK11fZQoaAZoCWgPQwgDs0KR7ufwv5SGlFKUaBVLMmgWR0CnPZKm8/UwdX2UKGgGaAloD0MIGO3xQjq847+UhpRSlGgVSzJoFkdApz9hP420iXV9lChoBmgJaA9DCIj2sYLfxvO/lIaUUpRoFUsyaBZHQKc/I2eg+Ql1fZQoaAZoCWgPQwjI0RxZ+eXgv5SGlFKUaBVLMmgWR0CnPuaab4JvdX2UKGgGaAloD0MI0765v3rc37+UhpRSlGgVSzJoFkdApz6oV2zOX3V9lChoBmgJaA9DCAZkr3d/vOm/lIaUUpRoFUsyaBZHQKdAcecx0uF1fZQoaAZoCWgPQwhqEyf3OxTlv5SGlFKUaBVLMmgWR0CnQDQdS2pidX2UKGgGaAloD0MISkIibeNPzr+UhpRSlGgVSzJoFkdApz/3O8kD6nV9lChoBmgJaA9DCE+RQ8TNKeO/lIaUUpRoFUsyaBZHQKc/uOgg5ip1fZQoaAZoCWgPQwgv/UtSmWLlv5SGlFKUaBVLMmgWR0CnQYbCBPKudX2UKGgGaAloD0MIB7ZKsDgc6b+UhpRSlGgVSzJoFkdAp0FI71ZkkXV9lChoBmgJaA9DCAb2mEhpNuO/lIaUUpRoFUsyaBZHQKdBC/lhgE51fZQoaAZoCWgPQwgIIos08Q7av5SGlFKUaBVLMmgWR0CnQM2e6I3zdX2UKGgGaAloD0MIcXK/Q1Eg57+UhpRSlGgVSzJoFkdAp0KbiOvMbHV9lChoBmgJaA9DCMe44uKoXO2/lIaUUpRoFUsyaBZHQKdCXcjZ+QV1fZQoaAZoCWgPQwhQ5EnSNdPyv5SGlFKUaBVLMmgWR0CnQiC2DxsmdX2UKGgGaAloD0MIOiAJ+3YS3b+UhpRSlGgVSzJoFkdAp0Hia1Cw8nV9lChoBmgJaA9DCN/BTxxAv96/lIaUUpRoFUsyaBZHQKdDq+lCTll1fZQoaAZoCWgPQwiGIXL6ej7jv5SGlFKUaBVLMmgWR0CnQ23vQWvbdX2UKGgGaAloD0MIB1xXzAhv5r+UhpRSlGgVSzJoFkdAp0MxFI/Z/XV9lChoBmgJaA9DCBqIZTOHpOS/lIaUUpRoFUsyaBZHQKdC8vW6K+B1fZQoaAZoCWgPQwhXCKuxhLXev5SGlFKUaBVLMmgWR0CnRMWjfvWpdX2UKGgGaAloD0MIVFc+y/Ng5r+UhpRSlGgVSzJoFkdAp0SHz8P4EnV9lChoBmgJaA9DCErusInMXNq/lIaUUpRoFUsyaBZHQKdEStuk1uR1fZQoaAZoCWgPQwhvoMA7+fTav5SGlFKUaBVLMmgWR0CnRAx8+iaidX2UKGgGaAloD0MIBoIAGTq29L+UhpRSlGgVSzJoFkdAp0XVbkfcOHV9lChoBmgJaA9DCAQb17/rs/a/lIaUUpRoFUsyaBZHQKdFl4Irvst1fZQoaAZoCWgPQwiD+pY5XRbZv5SGlFKUaBVLMmgWR0CnRVp7b+LndX2UKGgGaAloD0MIrmTHRiBe8r+UhpRSlGgVSzJoFkdAp0UcGLUCrHV9lChoBmgJaA9DCN7Jp8e2jOm/lIaUUpRoFUsyaBZHQKdHmGUOd5J1fZQoaAZoCWgPQwi1wYno11bsv5SGlFKUaBVLMmgWR0CnR1telbeNdX2UKGgGaAloD0MI+wW7Ydui47+UhpRSlGgVSzJoFkdAp0cfLgXMyXV9lChoBmgJaA9DCBwlr84xoOy/lIaUUpRoFUsyaBZHQKdG4afBeol1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30cfde7b56032a2943403acf852fb31a4e3cb049f419fae429bb003e3009d1c7
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74d05f6f42ecd405c5f0c35e127689e47dbdb022b3975b1cd44396764c3e1b17
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3d8e15f8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3d8e162180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681673830935508023, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYVDXPicymrtPdBA/YVDXPicymrtPdBA/YVDXPicymrtPdBA/YVDXPicymrtPdBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGWbOv+PvKz9vlao+9/4kP/atXT+Ua6u/bS0ZvZ5+t7+zzV62PA1pv2bZpr8k9o6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7phUNc+JzKau090ED/Z/6W7Y/Y0u1UIH7qUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]\n [ 0.42053512 -0.00470569 0.5642747 ]]", "desired_goal": "[[-1.6124908e+00 6.7162913e-01 3.3317134e-01]\n [ 6.4451545e-01 8.6593568e-01 -1.3392205e+00]\n [-3.7396837e-02 -1.4335515e+00 -3.3200311e-06]\n [-9.1035819e-01 -1.3035095e+00 -1.1168866e+00]]", "observation": "[[ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]\n [ 0.42053512 -0.00470569 0.5642747 -0.0050659 -0.00276127 -0.00060666]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADPgMvsQB9Twgqr491WfNPPHKvTywnRY+PLOCPGY6FT4IAoI+sTW0PTJyyT2ueZU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13766497 0.02990807 0.09309793]\n [ 0.02507393 0.02316806 0.1470859 ]\n [ 0.01595461 0.14573058 0.25392175]\n [ 0.08799303 0.09836234 0.29194397]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItoE7UKe85L+UhpRSlIwBbJRLMowBdJRHQKcow5uIhyN1fZQoaAZoCWgPQwhuMqoM427gv5SGlFKUaBVLMmgWR0CnKIbEYO2BdX2UKGgGaAloD0MI/iYUIuCQ4L+UhpRSlGgVSzJoFkdApyhLKT0QLHV9lChoBmgJaA9DCPkx5q4lZPG/lIaUUpRoFUsyaBZHQKcoDgsK9f11fZQoaAZoCWgPQwglBRbAlAHpv5SGlFKUaBVLMmgWR0CnKpHHmzSkdX2UKGgGaAloD0MImRBzSdX26L+UhpRSlGgVSzJoFkdApypUry1/lXV9lChoBmgJaA9DCLZHb7iPXOe/lIaUUpRoFUsyaBZHQKcqGICU5dZ1fZQoaAZoCWgPQwgstklFY+3Sv5SGlFKUaBVLMmgWR0CnKdsr3CbddX2UKGgGaAloD0MIPnjt0obD5L+UhpRSlGgVSzJoFkdApyxhIlMRH3V9lChoBmgJaA9DCNyhYTHqWum/lIaUUpRoFUsyaBZHQKcsJBJI1+B1fZQoaAZoCWgPQwip+Sr52F3av5SGlFKUaBVLMmgWR0CnK+gtvn8sdX2UKGgGaAloD0MI3ZVdMLjmxr+UhpRSlGgVSzJoFkdApyuq+Yc/+3V9lChoBmgJaA9DCB8wD5nyYfK/lIaUUpRoFUsyaBZHQKcuOAWBSUF1fZQoaAZoCWgPQwg+A+rNqHn0v5SGlFKUaBVLMmgWR0CnLfsC1Z1WdX2UKGgGaAloD0MIqyAGuvaF6L+UhpRSlGgVSzJoFkdApy2/BDXvpnV9lChoBmgJaA9DCEOs/gjDAO2/lIaUUpRoFUsyaBZHQKctgYNRWLh1fZQoaAZoCWgPQwhIqBlSRfHxv5SGlFKUaBVLMmgWR0CnMBMIE8q4dX2UKGgGaAloD0MIHsGNlC2S27+UhpRSlGgVSzJoFkdApy/V7a7EpHV9lChoBmgJaA9DCAw6IXTQJdy/lIaUUpRoFUsyaBZHQKcvmgow22p1fZQoaAZoCWgPQwh3LLZJRWPcv5SGlFKUaBVLMmgWR0CnL1x3mmtRdX2UKGgGaAloD0MIhjsXRnpR0b+UhpRSlGgVSzJoFkdApzH6uZCv5nV9lChoBmgJaA9DCKClK9hGPM2/lIaUUpRoFUsyaBZHQKcxvNUwSJ11fZQoaAZoCWgPQwg+zF62nXbxv5SGlFKUaBVLMmgWR0CnMX/xc3VDdX2UKGgGaAloD0MITWiSWFLu5r+UhpRSlGgVSzJoFkdApzFBoPCl8HV9lChoBmgJaA9DCNb+zvboDdu/lIaUUpRoFUsyaBZHQKczFE+gUUR1fZQoaAZoCWgPQwiAuRYtQNvMv5SGlFKUaBVLMmgWR0CnMtZvtMPCdX2UKGgGaAloD0MInZ53Y0Fh6b+UhpRSlGgVSzJoFkdApzKZUHY6GXV9lChoBmgJaA9DCJD5gEBn0uW/lIaUUpRoFUsyaBZHQKcyWx2St/51fZQoaAZoCWgPQwiGOxdGelHSv5SGlFKUaBVLMmgWR0CnNESgf2bodX2UKGgGaAloD0MISMSUSKKX3L+UhpRSlGgVSzJoFkdApzQGzlcQiHV9lChoBmgJaA9DCB/Xhopx/vC/lIaUUpRoFUsyaBZHQKczy8s+V1R1fZQoaAZoCWgPQwh5Bg39E9znv5SGlFKUaBVLMmgWR0CnM45i/fwadX2UKGgGaAloD0MIYi8UsB2M0r+UhpRSlGgVSzJoFkdApzVhnUUfxXV9lChoBmgJaA9DCBIz+zxG+eK/lIaUUpRoFUsyaBZHQKc1I74i5d51fZQoaAZoCWgPQwhj8gaY+Y7jv5SGlFKUaBVLMmgWR0CnNObjkuHvdX2UKGgGaAloD0MINEsC1NSy5b+UhpRSlGgVSzJoFkdApzSorQPZqXV9lChoBmgJaA9DCCWWlLvPceW/lIaUUpRoFUsyaBZHQKc2db9If8x1fZQoaAZoCWgPQwjVrglpjUHnv5SGlFKUaBVLMmgWR0CnNjfhuO0cdX2UKGgGaAloD0MIZhL1gk9z6r+UhpRSlGgVSzJoFkdApzX63Zwn6XV9lChoBmgJaA9DCCEE5Euo4OO/lIaUUpRoFUsyaBZHQKc1vJdSl311fZQoaAZoCWgPQwjhJM0f09rfv5SGlFKUaBVLMmgWR0CnN4uktVaPdX2UKGgGaAloD0MIQ1VMpZ9w6b+UhpRSlGgVSzJoFkdApzdNygf2b3V9lChoBmgJaA9DCMZP4978hu2/lIaUUpRoFUsyaBZHQKc3EM+/xlR1fZQoaAZoCWgPQwhxWvCir6Dhv5SGlFKUaBVLMmgWR0CnNtJzLfUGdX2UKGgGaAloD0MItCJqos/H57+UhpRSlGgVSzJoFkdApziqc3EQ5HV9lChoBmgJaA9DCJBLHHkgMuG/lIaUUpRoFUsyaBZHQKc4bKujh1l1fZQoaAZoCWgPQwjohTsXRnrWv5SGlFKUaBVLMmgWR0CnOC/BnBcidX2UKGgGaAloD0MIz4HlCBnI4r+UhpRSlGgVSzJoFkdApzfxYV6/qXV9lChoBmgJaA9DCLgE4J9Speq/lIaUUpRoFUsyaBZHQKc5vusLfDV1fZQoaAZoCWgPQwg/kSdJ18zsv5SGlFKUaBVLMmgWR0CnOYEuxrzodX2UKGgGaAloD0MIsdzSakhc6b+UhpRSlGgVSzJoFkdApzlEM1CPZXV9lChoBmgJaA9DCDawVYLFYeK/lIaUUpRoFUsyaBZHQKc5BeBxxT91fZQoaAZoCWgPQwgZPEz75v7rv5SGlFKUaBVLMmgWR0CnOwIZhrnDdX2UKGgGaAloD0MI7ISX4NQH97+UhpRSlGgVSzJoFkdApzrERlHz6XV9lChoBmgJaA9DCPzIrUm3Jfa/lIaUUpRoFUsyaBZHQKc6h+n62v11fZQoaAZoCWgPQwheEmdF1ETwv5SGlFKUaBVLMmgWR0CnOkmFSKm9dX2UKGgGaAloD0MIRnu8kA4P77+UhpRSlGgVSzJoFkdApzwWhVU+93V9lChoBmgJaA9DCOBkG7gDdeO/lIaUUpRoFUsyaBZHQKc72MBIWgx1fZQoaAZoCWgPQwi78lmeB/fkv5SGlFKUaBVLMmgWR0CnO5uv+wTudX2UKGgGaAloD0MIuMoTCDsF8L+UhpRSlGgVSzJoFkdApztdWyTpxHV9lChoBmgJaA9DCMkh4uZUMuO/lIaUUpRoFUsyaBZHQKc9MXHim2t1fZQoaAZoCWgPQwhEwYwpWGPjv5SGlFKUaBVLMmgWR0CnPPN+kP+XdX2UKGgGaAloD0MIY3rCEg8o67+UhpRSlGgVSzJoFkdApzy2dNFjNXV9lChoBmgJaA9DCCoZAKq4ceK/lIaUUpRoFUsyaBZHQKc8eAfdRBN1fZQoaAZoCWgPQwgyjpHsEernv5SGlFKUaBVLMmgWR0CnPkvwNLDidX2UKGgGaAloD0MIJ1DEIoYd37+UhpRSlGgVSzJoFkdApz4OC04R3HV9lChoBmgJaA9DCAghIF9CBdy/lIaUUpRoFUsyaBZHQKc90N8VpK11fZQoaAZoCWgPQwgDs0KR7ufwv5SGlFKUaBVLMmgWR0CnPZKm8/UwdX2UKGgGaAloD0MIGO3xQjq847+UhpRSlGgVSzJoFkdApz9hP420iXV9lChoBmgJaA9DCIj2sYLfxvO/lIaUUpRoFUsyaBZHQKc/I2eg+Ql1fZQoaAZoCWgPQwjI0RxZ+eXgv5SGlFKUaBVLMmgWR0CnPuaab4JvdX2UKGgGaAloD0MI0765v3rc37+UhpRSlGgVSzJoFkdApz6oV2zOX3V9lChoBmgJaA9DCAZkr3d/vOm/lIaUUpRoFUsyaBZHQKdAcecx0uF1fZQoaAZoCWgPQwhqEyf3OxTlv5SGlFKUaBVLMmgWR0CnQDQdS2pidX2UKGgGaAloD0MISkIibeNPzr+UhpRSlGgVSzJoFkdApz/3O8kD6nV9lChoBmgJaA9DCE+RQ8TNKeO/lIaUUpRoFUsyaBZHQKc/uOgg5ip1fZQoaAZoCWgPQwgv/UtSmWLlv5SGlFKUaBVLMmgWR0CnQYbCBPKudX2UKGgGaAloD0MIB7ZKsDgc6b+UhpRSlGgVSzJoFkdAp0FI71ZkkXV9lChoBmgJaA9DCAb2mEhpNuO/lIaUUpRoFUsyaBZHQKdBC/lhgE51fZQoaAZoCWgPQwgIIos08Q7av5SGlFKUaBVLMmgWR0CnQM2e6I3zdX2UKGgGaAloD0MIcXK/Q1Eg57+UhpRSlGgVSzJoFkdAp0KbiOvMbHV9lChoBmgJaA9DCMe44uKoXO2/lIaUUpRoFUsyaBZHQKdCXcjZ+QV1fZQoaAZoCWgPQwhQ5EnSNdPyv5SGlFKUaBVLMmgWR0CnQiC2DxsmdX2UKGgGaAloD0MIOiAJ+3YS3b+UhpRSlGgVSzJoFkdAp0Hia1Cw8nV9lChoBmgJaA9DCN/BTxxAv96/lIaUUpRoFUsyaBZHQKdDq+lCTll1fZQoaAZoCWgPQwiGIXL6ej7jv5SGlFKUaBVLMmgWR0CnQ23vQWvbdX2UKGgGaAloD0MIB1xXzAhv5r+UhpRSlGgVSzJoFkdAp0MxFI/Z/XV9lChoBmgJaA9DCBqIZTOHpOS/lIaUUpRoFUsyaBZHQKdC8vW6K+B1fZQoaAZoCWgPQwhXCKuxhLXev5SGlFKUaBVLMmgWR0CnRMWjfvWpdX2UKGgGaAloD0MIVFc+y/Ng5r+UhpRSlGgVSzJoFkdAp0SHz8P4EnV9lChoBmgJaA9DCErusInMXNq/lIaUUpRoFUsyaBZHQKdEStuk1uR1fZQoaAZoCWgPQwhvoMA7+fTav5SGlFKUaBVLMmgWR0CnRAx8+iaidX2UKGgGaAloD0MIBoIAGTq29L+UhpRSlGgVSzJoFkdAp0XVbkfcOHV9lChoBmgJaA9DCAQb17/rs/a/lIaUUpRoFUsyaBZHQKdFl4Irvst1fZQoaAZoCWgPQwiD+pY5XRbZv5SGlFKUaBVLMmgWR0CnRVp7b+LndX2UKGgGaAloD0MIrmTHRiBe8r+UhpRSlGgVSzJoFkdAp0UcGLUCrHV9lChoBmgJaA9DCN7Jp8e2jOm/lIaUUpRoFUsyaBZHQKdHmGUOd5J1fZQoaAZoCWgPQwi1wYno11bsv5SGlFKUaBVLMmgWR0CnR1telbeNdX2UKGgGaAloD0MI+wW7Ydui47+UhpRSlGgVSzJoFkdAp0cfLgXMyXV9lChoBmgJaA9DCBwlr84xoOy/lIaUUpRoFUsyaBZHQKdG4afBeol1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (299 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.7334793872199953, "std_reward": 0.2681778429443316, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T20:26:49.666200"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b54f39eab429c22ef9df19a2a849168059596cff6458564e1c431520bf90b4
3
+ size 2381