baichuan-7b-qlora-moss / src /utils /data_collator.py
Laurie's picture
Add src folder
abbcb88
raw
history blame
2.72 kB
import torch
from typing import Dict, Optional, Sequence, Union
from transformers import DataCollatorWithPadding, BatchEncoding
from transformers.tokenization_utils import PreTrainedTokenizer
from .other import IGNORE_INDEX
class DynamicDataCollatorWithPadding(DataCollatorWithPadding):
r"""
Inherits DataCollatorWithPadding. It is capable of dynamically padding for batched data.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
ignore_pad_token_for_loss: Optional[bool] = False
):
super().__init__(tokenizer, padding=True)
self.label_pad_token_id = IGNORE_INDEX if ignore_pad_token_for_loss else tokenizer.pad_token_id
def get_attention_masks(self, input_ids: torch.Tensor, device: torch.device) -> torch.Tensor:
r"""
Generates attention masks for left-padded sequences.
"""
batch_size, seq_length = input_ids.size()
attention_mask = torch.ones((batch_size, seq_length), device=device)
for i, seq in enumerate(input_ids):
attention_mask[i, :(seq != self.tokenizer.pad_token_id).nonzero()[0].item()] = 0 # padding
attention_mask = attention_mask.bool()
return attention_mask
def __call__(self, features: Sequence[Dict[str, Union[torch.Tensor, Sequence[int]]]]) -> BatchEncoding:
r"""
Pads batched data to the longest sequence in the batch.
We adopt left-padding in both training and evaluation.
"""
if isinstance(features[0]["input_ids"], torch.Tensor):
input_ids = [feature["input_ids"].clone().detach().flip(0) for feature in features]
else:
input_ids = [torch.tensor(feature["input_ids"]).flip(0) for feature in features]
if "labels" in features[0]:
if isinstance(features[0]["labels"], torch.Tensor):
labels = [feature["labels"].clone().detach().flip(0) for feature in features]
else:
labels = [torch.tensor(feature["labels"]).flip(0) for feature in features]
input_ids = input_ids + labels # pad them to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id).flip(-1)
batch = {}
if "labels" in features[0]:
input_ids, labels = input_ids.split(len(features), dim=0)
labels = torch.where(labels != self.tokenizer.pad_token_id, labels, self.label_pad_token_id)
batch["labels"] = labels
batch["input_ids"] = input_ids
batch["attention_mask"] = self.get_attention_masks(input_ids, device=input_ids.device)
return BatchEncoding(batch)