|
|
|
|
|
|
|
|
|
|
|
import mdtex2html |
|
import gradio as gr |
|
|
|
from threading import Thread |
|
from utils import ( |
|
Template, |
|
load_pretrained, |
|
prepare_infer_args, |
|
get_logits_processor |
|
) |
|
|
|
from transformers import TextIteratorStreamer |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0") |
|
|
|
|
|
model_args, data_args, finetuning_args, generating_args = prepare_infer_args() |
|
model, tokenizer = load_pretrained(model_args, finetuning_args) |
|
|
|
prompt_template = Template(data_args.prompt_template) |
|
|
|
|
|
def postprocess(self, y): |
|
r""" |
|
Overrides Chatbot.postprocess |
|
""" |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split("`") |
|
if count % 2 == 1: |
|
lines[i] = "<pre><code class=\"language-{}\">".format(items[-1]) |
|
else: |
|
lines[i] = "<br /></code></pre>" |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", "\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br />" + line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def predict(query, chatbot, max_length, top_p, temperature, history): |
|
chatbot.append((parse_text(query), "")) |
|
|
|
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"] |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
gen_kwargs = { |
|
"input_ids": input_ids, |
|
"do_sample": generating_args.do_sample, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"num_beams": generating_args.num_beams, |
|
"max_length": max_length, |
|
"repetition_penalty": generating_args.repetition_penalty, |
|
"logits_processor": get_logits_processor(), |
|
"streamer": streamer |
|
} |
|
|
|
thread = Thread(target=model.generate, kwargs=gen_kwargs) |
|
thread.start() |
|
|
|
response = "" |
|
for new_text in streamer: |
|
response += new_text |
|
new_history = history + [(query, response)] |
|
chatbot[-1] = (parse_text(query), parse_text(response)) |
|
yield chatbot, new_history |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.HTML(""" |
|
<h1 align="center"> |
|
<a href="https://chato.cn/" target="_blank"> |
|
百姓AI助手 |
|
</a> |
|
</h1> |
|
""") |
|
|
|
chatbot = gr.Chatbot() |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False) |
|
with gr.Column(min_width=32, scale=1): |
|
submitBtn = gr.Button("Submit", variant="primary") |
|
|
|
with gr.Column(scale=1): |
|
emptyBtn = gr.Button("Clear History") |
|
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=generating_args.top_p, step=0.01, label="Top P", interactive=True) |
|
temperature = gr.Slider(0, 1.5, value=generating_args.temperature, step=0.01, label="Temperature", interactive=True) |
|
|
|
history = gr.State([]) |
|
|
|
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) |
|
|
|
demo.queue().launch(server_name="0.0.0.0", share=True, inbrowser=True) |
|
|