Laurie's picture
Add src folder
abbcb88
raw
history blame
4.91 kB
# coding=utf-8
# Implements user interface in browser for fine-tuned models.
# Usage: python web_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
import mdtex2html
import gradio as gr
from threading import Thread
from utils import (
Template,
load_pretrained,
prepare_infer_args,
get_logits_processor
)
from transformers import TextIteratorStreamer
from transformers.utils.versions import require_version
require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0")
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
model, tokenizer = load_pretrained(model_args, finetuning_args)
prompt_template = Template(data_args.prompt_template)
def postprocess(self, y):
r"""
Overrides Chatbot.postprocess
"""
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = "<pre><code class=\"language-{}\">".format(items[-1])
else:
lines[i] = "<br /></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br />" + line
text = "".join(lines)
return text
def predict(query, chatbot, max_length, top_p, temperature, history):
chatbot.append((parse_text(query), ""))
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
"input_ids": input_ids,
"do_sample": generating_args.do_sample,
"top_p": top_p,
"temperature": temperature,
"num_beams": generating_args.num_beams,
"max_length": max_length,
"repetition_penalty": generating_args.repetition_penalty,
"logits_processor": get_logits_processor(),
"streamer": streamer
}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
new_history = history + [(query, response)]
chatbot[-1] = (parse_text(query), parse_text(response))
yield chatbot, new_history
def reset_user_input():
return gr.update(value="")
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""
<h1 align="center">
<a href="https://chato.cn/" target="_blank">
百姓AI助手
</a>
</h1>
""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=generating_args.top_p, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1.5, value=generating_args.temperature, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(server_name="0.0.0.0", share=True, inbrowser=True)