File size: 6,572 Bytes
678c322
 
 
 
 
 
 
 
 
 
 
 
 
 
806c6d1
be4ccd9
e7fe523
be4ccd9
 
 
 
 
 
e7fe523
 
 
678c322
 
656ef1b
678c322
 
 
 
 
1da5745
678c322
 
3747dd8
77cf3bf
e753e88
77cf3bf
e753e88
77cf3bf
e753e88
 
 
 
77cf3bf
e753e88
 
 
 
77cf3bf
e753e88
 
 
 
77cf3bf
e753e88
 
 
 
3747dd8
678c322
 
 
 
656ef1b
 
 
 
678c322
 
656ef1b
678c322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee8a88
678c322
 
5cee089
 
 
 
 
 
 
 
 
 
678c322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
base_model:
- Laxhar/noobai-XL_v1.0
pipeline_tag: text-to-image
tags:
- Diffusers
- Safetensors
---

# Model Introduction

This image generation model, based on Laxhar/noobai-XL_v1.0, leverages full Danbooru and e621 datasets with native tags and natural language captioning. 

Implemented as a v-prediction model (distinct from eps-prediction), it requires specific parameter configurations - detailed in following sections. 

Special thanks to my teammate euge for the coding work, and we're grateful for the technical support from many helpful community members.


# ⚠️ IMPORTANT NOTICE ⚠️
## **THIS MODEL WORKS DIFFERENT FROM EPS MODELS!**
## **PLEASE READ THE GUIDE CAREFULLY!**



## Model Details
- **Developed by**: [Laxhar Lab](https://huggingface.co/Laxhar)
  
- **Model Type**: Diffusion-based text-to-image generative model

- **Fine-tuned from**: Laxhar/noobai-XL_v1.0
   
- **Sponsored by from**: [Lanyun Cloud](https://cloud.lanyun.net)
---
# How to Use the Model.

## Steps

1. Clone the repository
```bash
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
```

2. Switch to dev branch
```bash
git switch dev
```

3. Pull latest updates
```bash
git pull
```

4. Use normally)
   - Follow standard procedures to launch and use the model

---
**Note**: Make sure Git is installed and environment is properly configured
---

# Recommended Settings

## Parameters

(For vpred model, recommend using low cfg and more Steps)
- CFG: 4 ~ 5
- Steps: 28 ~ 35 
- Sampling Method:Euler a
- Resolution:aim for around 1024\*1024

## Prompts
- Prompt:
```
masterpiece, best quality, newest, absurdres, highres, safe,
```
- Negative Prompt:
```
 nsfw,worst quality,old,early,low quality,quality,lowres,signature,username,bad id,bad twitter id,english commentary,logo,bad hands,mutated hands,mammal,anthro,furry,ambiguous_form,feral,semi-anthro
```

# Usage Guidelines

## Caption
  ```
  <1girl/1boy/1other/...>, <character>, <series>, <artists>, <special tags>, <general tags>, <other tags>
  ```

## Quality Tags
For quality tags, we evaluated image popularity through the following process: 
-  Data normalization based on various sources and ratings.
-  Application of time-based decay coefficients according to date recency.
-  Ranking of images within the entire dataset based on this processing.
   
Our ultimate goal is to ensure that quality tags effectively track user preferences in recent years.

| Percentile Range | Quality Tags |
|:-----------------|:------------------|
| > 95th           | masterpiece       |
| > 85th, <= 95th  | best quality      |
| > 60th, <= 85th  | good quality      |
| > 30th, <= 60th  | normal quality    |
| <= 30th          | worst quality     |

## Date tags
| Year Range | Period |
|:-----------------|:------------------|
| 2005-2010   | old       |
| 2011-2014   | early     |
| 2014-2017   | mid       |
| 2018-2020   | recent    |
| 2021-2024   | newest    |

## Datasets
- Latest Danbooru images up to the training date(approximately before 2024-10-23)
- E621 images [e621-2024-webp-4Mpixel](https://huggingface.co/datasets/NebulaeWis/e621-2024-webp-4Mpixel) dataset on Hugging Face

**Communication**

* **QQ Groups:**
    * 875042008
    * 914818692
    * 635772191

* **Discord:** [Laxhar Dream Lab SDXL NOOB](https://discord.com/invite/DKnFjKEEvH)


# Model License

This model's license inherits from https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0  fair-ai-public-license-1.0-sd and adds the following terms. Any use of this model and its variants is bound by this license.

## I. Usage Restrictions

- Prohibited use for harmful, malicious, or illegal activities, including but not limited to harassment, threats, and spreading misinformation.
- Prohibited generation of unethical or offensive content.
- Prohibited violation of laws and regulations in the user's jurisdiction.

## II. Commercial Prohibition

We prohibit any form of commercialization, including but not limited to monetization or commercial use of the model, derivative models, or model-generated products.

## III. Open Source Community

For the open source community, you need to:

- Open source derivative models, merged models, LoRAs, and products based on the above models.
- Share work details such as synthesis formulas, prompts, and workflows.
- Follow the fair-ai-public-license to ensure derivative works remain open source.

## IV. Disclaimer

Generated models may produce unexpected or harmful outputs. Users must assume all risks and potential consequences of usage.

# Participants and Contributors

## Participants

* **L_A_X:** [Civitai](https://civitai.com/user/L_A_X) | [Liblib.art](https://www.liblib.art/userpage/9e1b16538b9657f2a737e9c2c6ebfa69)
* **li_li:** [Civitai](https://civitai.com/user/li_li)
* **nebulae:** [Civitai](https://civitai.com/user/kitarz)
* **Chenkin:** [Civitai](https://civitai.com/user/Chenkin)
* **Euge:** [Civitai](https://civitai.com/user/Euge_)


## Contributors

* **Narugo1992:**  Thanks to narugo1992 and the deepghs team for open-sourcing various training sets, image processing tools, and models.
    * [GitHub](https://github.com/narugo1992)
    * [Hugging Face](https://huggingface.co/deepghs)

* **Naifu:** Training scripts
    * [GitHub](https://github.com/Mikubill/naifu)

* **Onommai:** Thanks to onommai for open-sourcing a powerful base model.
    * [Onommai](https://onomaai.com/)

* **aria1th261:** [Civitai](https://civitai.com/user/aria1th261)
* **neggles:** [GitHub](https://github.com/neggles/neurosis)
* **parsee-mizuhashi:** [Hugging Face](https://huggingface.co/parsee-mizuhashi)
* **bluvoll:** [Civitai](https://civitai.com/user/bluvoll)
* **sdtana:** [Hugging Face](https://huggingface.co/sdtana)
* **chewing:** [Hugging Face](https://huggingface.co/chewing)
* **irldoggo:** [GitHub](https://github.com/irldoggo)
* **reoe:** [Hugging Face](https://huggingface.co/reoe)
* **kblueleaf:** [Civitai](https://civitai.com/user/kblueleaf)
* **Yidhar:** [GitHub](https://github.com/Yidhar)
* **Others:** ageless, 白玲可, Creeper, KaerMorh, 吟游诗人, SeASnAkE, [zwh20081](https://civitai.com/user/zwh20081), Wenaka⁧~喵, 稀里哗啦, 幸运二副, 昨日の約, 445, [EBIX](https://civitai.com/user/EBIX), [Sopp](https://huggingface.co/goyishsoyish), [Y_X](https://civitai.com/user/Y_X), adsfssdf, [Minthybasis](https://civitai.com/user/Minthybasis), [Rakosz](https://civitai.com/user/Rakosz)