File size: 6,572 Bytes
678c322 806c6d1 be4ccd9 e7fe523 be4ccd9 e7fe523 678c322 656ef1b 678c322 1da5745 678c322 3747dd8 77cf3bf e753e88 77cf3bf e753e88 77cf3bf e753e88 77cf3bf e753e88 77cf3bf e753e88 77cf3bf e753e88 3747dd8 678c322 656ef1b 678c322 656ef1b 678c322 cee8a88 678c322 5cee089 678c322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
base_model:
- Laxhar/noobai-XL_v1.0
pipeline_tag: text-to-image
tags:
- Diffusers
- Safetensors
---
# Model Introduction
This image generation model, based on Laxhar/noobai-XL_v1.0, leverages full Danbooru and e621 datasets with native tags and natural language captioning.
Implemented as a v-prediction model (distinct from eps-prediction), it requires specific parameter configurations - detailed in following sections.
Special thanks to my teammate euge for the coding work, and we're grateful for the technical support from many helpful community members.
# ⚠️ IMPORTANT NOTICE ⚠️
## **THIS MODEL WORKS DIFFERENT FROM EPS MODELS!**
## **PLEASE READ THE GUIDE CAREFULLY!**
## Model Details
- **Developed by**: [Laxhar Lab](https://huggingface.co/Laxhar)
- **Model Type**: Diffusion-based text-to-image generative model
- **Fine-tuned from**: Laxhar/noobai-XL_v1.0
- **Sponsored by from**: [Lanyun Cloud](https://cloud.lanyun.net)
---
# How to Use the Model.
## Steps
1. Clone the repository
```bash
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
```
2. Switch to dev branch
```bash
git switch dev
```
3. Pull latest updates
```bash
git pull
```
4. Use normally)
- Follow standard procedures to launch and use the model
---
**Note**: Make sure Git is installed and environment is properly configured
---
# Recommended Settings
## Parameters
(For vpred model, recommend using low cfg and more Steps)
- CFG: 4 ~ 5
- Steps: 28 ~ 35
- Sampling Method:Euler a
- Resolution:aim for around 1024\*1024
## Prompts
- Prompt:
```
masterpiece, best quality, newest, absurdres, highres, safe,
```
- Negative Prompt:
```
nsfw,worst quality,old,early,low quality,quality,lowres,signature,username,bad id,bad twitter id,english commentary,logo,bad hands,mutated hands,mammal,anthro,furry,ambiguous_form,feral,semi-anthro
```
# Usage Guidelines
## Caption
```
<1girl/1boy/1other/...>, <character>, <series>, <artists>, <special tags>, <general tags>, <other tags>
```
## Quality Tags
For quality tags, we evaluated image popularity through the following process:
- Data normalization based on various sources and ratings.
- Application of time-based decay coefficients according to date recency.
- Ranking of images within the entire dataset based on this processing.
Our ultimate goal is to ensure that quality tags effectively track user preferences in recent years.
| Percentile Range | Quality Tags |
|:-----------------|:------------------|
| > 95th | masterpiece |
| > 85th, <= 95th | best quality |
| > 60th, <= 85th | good quality |
| > 30th, <= 60th | normal quality |
| <= 30th | worst quality |
## Date tags
| Year Range | Period |
|:-----------------|:------------------|
| 2005-2010 | old |
| 2011-2014 | early |
| 2014-2017 | mid |
| 2018-2020 | recent |
| 2021-2024 | newest |
## Datasets
- Latest Danbooru images up to the training date(approximately before 2024-10-23)
- E621 images [e621-2024-webp-4Mpixel](https://huggingface.co/datasets/NebulaeWis/e621-2024-webp-4Mpixel) dataset on Hugging Face
**Communication**
* **QQ Groups:**
* 875042008
* 914818692
* 635772191
* **Discord:** [Laxhar Dream Lab SDXL NOOB](https://discord.com/invite/DKnFjKEEvH)
# Model License
This model's license inherits from https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0 fair-ai-public-license-1.0-sd and adds the following terms. Any use of this model and its variants is bound by this license.
## I. Usage Restrictions
- Prohibited use for harmful, malicious, or illegal activities, including but not limited to harassment, threats, and spreading misinformation.
- Prohibited generation of unethical or offensive content.
- Prohibited violation of laws and regulations in the user's jurisdiction.
## II. Commercial Prohibition
We prohibit any form of commercialization, including but not limited to monetization or commercial use of the model, derivative models, or model-generated products.
## III. Open Source Community
For the open source community, you need to:
- Open source derivative models, merged models, LoRAs, and products based on the above models.
- Share work details such as synthesis formulas, prompts, and workflows.
- Follow the fair-ai-public-license to ensure derivative works remain open source.
## IV. Disclaimer
Generated models may produce unexpected or harmful outputs. Users must assume all risks and potential consequences of usage.
# Participants and Contributors
## Participants
* **L_A_X:** [Civitai](https://civitai.com/user/L_A_X) | [Liblib.art](https://www.liblib.art/userpage/9e1b16538b9657f2a737e9c2c6ebfa69)
* **li_li:** [Civitai](https://civitai.com/user/li_li)
* **nebulae:** [Civitai](https://civitai.com/user/kitarz)
* **Chenkin:** [Civitai](https://civitai.com/user/Chenkin)
* **Euge:** [Civitai](https://civitai.com/user/Euge_)
## Contributors
* **Narugo1992:** Thanks to narugo1992 and the deepghs team for open-sourcing various training sets, image processing tools, and models.
* [GitHub](https://github.com/narugo1992)
* [Hugging Face](https://huggingface.co/deepghs)
* **Naifu:** Training scripts
* [GitHub](https://github.com/Mikubill/naifu)
* **Onommai:** Thanks to onommai for open-sourcing a powerful base model.
* [Onommai](https://onomaai.com/)
* **aria1th261:** [Civitai](https://civitai.com/user/aria1th261)
* **neggles:** [GitHub](https://github.com/neggles/neurosis)
* **parsee-mizuhashi:** [Hugging Face](https://huggingface.co/parsee-mizuhashi)
* **bluvoll:** [Civitai](https://civitai.com/user/bluvoll)
* **sdtana:** [Hugging Face](https://huggingface.co/sdtana)
* **chewing:** [Hugging Face](https://huggingface.co/chewing)
* **irldoggo:** [GitHub](https://github.com/irldoggo)
* **reoe:** [Hugging Face](https://huggingface.co/reoe)
* **kblueleaf:** [Civitai](https://civitai.com/user/kblueleaf)
* **Yidhar:** [GitHub](https://github.com/Yidhar)
* **Others:** ageless, 白玲可, Creeper, KaerMorh, 吟游诗人, SeASnAkE, [zwh20081](https://civitai.com/user/zwh20081), Wenaka~喵, 稀里哗啦, 幸运二副, 昨日の約, 445, [EBIX](https://civitai.com/user/EBIX), [Sopp](https://huggingface.co/goyishsoyish), [Y_X](https://civitai.com/user/Y_X), adsfssdf, [Minthybasis](https://civitai.com/user/Minthybasis), [Rakosz](https://civitai.com/user/Rakosz) |