--- license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer language: - ind datasets: - GEM/indonlg metrics: - rouge model-index: - name: LazarusNLP/IndoNanoT5-base-IndoSum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: indonlg type: indonlg config: indosum split: test args: indosum metrics: - name: Rouge1 type: rouge value: 0.7529 - name: Rouge2 type: rouge value: 0.7123 - name: Rouge2 type: rouge value: 0.733 --- # LazarusNLP/IndoNanoT5-base-IndoSum This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the indonlg dataset. It achieves the following results on the evaluation set: - Loss: 0.1086 - Rouge1: 0.7529 - Rouge2: 0.7123 - Rougel: 0.733 - Rougelsum: 0.733 - Gen Len: 110.0391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.3004 | 1.0 | 1761 | 0.1682 | 0.258 | 0.2277 | 0.2549 | 0.255 | 19.0 | | 0.1463 | 2.0 | 3522 | 0.1318 | 0.2596 | 0.2305 | 0.2563 | 0.2565 | 19.0 | | 0.095 | 3.0 | 5283 | 0.1272 | 0.2602 | 0.2314 | 0.2571 | 0.257 | 19.0 | | 0.0705 | 4.0 | 7044 | 0.1186 | 0.2622 | 0.2338 | 0.2592 | 0.2592 | 19.0 | | 0.0436 | 5.0 | 8805 | 0.1236 | 0.2625 | 0.2342 | 0.2594 | 0.2596 | 19.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1