Update README.md
Browse files
README.md
CHANGED
@@ -18,9 +18,11 @@ datasets:
|
|
18 |
- indonesian-nlp/lfqa_id
|
19 |
- jakartaresearch/indoqa
|
20 |
- jakartaresearch/id-paraphrase-detection
|
|
|
|
|
21 |
---
|
22 |
|
23 |
-
# LazarusNLP/all-
|
24 |
|
25 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
26 |
|
@@ -40,7 +42,7 @@ Then you can use the model like this:
|
|
40 |
from sentence_transformers import SentenceTransformer
|
41 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
42 |
|
43 |
-
model = SentenceTransformer('LazarusNLP/all-
|
44 |
embeddings = model.encode(sentences)
|
45 |
print(embeddings)
|
46 |
```
|
@@ -66,8 +68,8 @@ def mean_pooling(model_output, attention_mask):
|
|
66 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
67 |
|
68 |
# Load model from HuggingFace Hub
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-
|
70 |
-
model = AutoModel.from_pretrained('LazarusNLP/all-
|
71 |
|
72 |
# Tokenize sentences
|
73 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -89,7 +91,7 @@ print(sentence_embeddings)
|
|
89 |
|
90 |
<!--- Describe how your model was evaluated -->
|
91 |
|
92 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-
|
93 |
|
94 |
|
95 |
## Training
|
@@ -99,7 +101,7 @@ The model was trained with the parameters:
|
|
99 |
|
100 |
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 968 with parameters:
|
101 |
```
|
102 |
-
{'
|
103 |
```
|
104 |
|
105 |
**Loss**:
|
|
|
18 |
- indonesian-nlp/lfqa_id
|
19 |
- jakartaresearch/indoqa
|
20 |
- jakartaresearch/id-paraphrase-detection
|
21 |
+
language:
|
22 |
+
- ind
|
23 |
---
|
24 |
|
25 |
+
# LazarusNLP/all-indo-e5-small-v2
|
26 |
|
27 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
28 |
|
|
|
42 |
from sentence_transformers import SentenceTransformer
|
43 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
44 |
|
45 |
+
model = SentenceTransformer('LazarusNLP/all-indo-e5-small-v2')
|
46 |
embeddings = model.encode(sentences)
|
47 |
print(embeddings)
|
48 |
```
|
|
|
68 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
69 |
|
70 |
# Load model from HuggingFace Hub
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indo-e5-small-v2')
|
72 |
+
model = AutoModel.from_pretrained('LazarusNLP/all-indo-e5-small-v2')
|
73 |
|
74 |
# Tokenize sentences
|
75 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
91 |
|
92 |
<!--- Describe how your model was evaluated -->
|
93 |
|
94 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indo-e5-small-v2)
|
95 |
|
96 |
|
97 |
## Training
|
|
|
101 |
|
102 |
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 968 with parameters:
|
103 |
```
|
104 |
+
{'batch_size_pairs': 384, 'batch_size_triplets': 256}
|
105 |
```
|
106 |
|
107 |
**Loss**:
|