--- license: mit base_model: indobenchmark/indobert-lite-base-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta results: [] --- # indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta This model is a fine-tuned version of [indobenchmark/indobert-lite-base-p1](https://huggingface.co/indobenchmark/indobert-lite-base-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5005 - Accuracy: 0.6545 - F1: 0.6524 - Precision: 0.6615 - Recall: 0.6577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4808 | 1.0 | 1803 | 0.4418 | 0.7683 | 0.7593 | 0.7904 | 0.7554 | | 0.4529 | 2.0 | 3606 | 0.4343 | 0.7738 | 0.7648 | 0.7893 | 0.7619 | | 0.4263 | 3.0 | 5409 | 0.4383 | 0.7861 | 0.7828 | 0.7874 | 0.7807 | | 0.398 | 4.0 | 7212 | 0.4456 | 0.7792 | 0.7767 | 0.7792 | 0.7756 | | 0.3772 | 5.0 | 9015 | 0.4499 | 0.7711 | 0.7674 | 0.7700 | 0.7661 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0