update model card README.md
Browse files
README.md
CHANGED
@@ -16,15 +16,14 @@ model-index:
|
|
16 |
dataset:
|
17 |
name: emotion
|
18 |
type: emotion
|
19 |
-
args:
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
-
value: 0.
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
-
value: 0.
|
27 |
-
duplicated_from: transformersbook/distilbert-base-uncased-finetuned-emotion
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,12 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
# distilbert-base-uncased-finetuned-emotion
|
34 |
|
35 |
-
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
|
36 |
-
|
37 |
It achieves the following results on the evaluation set:
|
38 |
-
- Loss: 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- F1: 0.
|
41 |
|
42 |
## Model description
|
43 |
|
@@ -68,13 +66,13 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
-
- Transformers 4.
|
78 |
-
- Pytorch
|
79 |
-
- Datasets
|
80 |
- Tokenizers 0.10.3
|
|
|
16 |
dataset:
|
17 |
name: emotion
|
18 |
type: emotion
|
19 |
+
args: split
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
+
value: 0.9245
|
24 |
- name: F1
|
25 |
type: f1
|
26 |
+
value: 0.9244610483889744
|
|
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
# distilbert-base-uncased-finetuned-emotion
|
33 |
|
34 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
|
|
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2193
|
37 |
+
- Accuracy: 0.9245
|
38 |
+
- F1: 0.9245
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
69 |
+
| 0.8598 | 1.0 | 250 | 0.3274 | 0.9005 | 0.8966 |
|
70 |
+
| 0.2584 | 2.0 | 500 | 0.2193 | 0.9245 | 0.9245 |
|
71 |
|
72 |
|
73 |
### Framework versions
|
74 |
|
75 |
+
- Transformers 4.13.0
|
76 |
+
- Pytorch 2.0.0+cu118
|
77 |
+
- Datasets 2.8.0
|
78 |
- Tokenizers 0.10.3
|