Update README.md
Browse files
README.md
CHANGED
@@ -63,7 +63,20 @@ It achieves the following results on the evaluation set:
|
|
63 |
|
64 |
## Intended uses & limitations
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
## Training and evaluation data
|
69 |
|
|
|
63 |
|
64 |
## Intended uses & limitations
|
65 |
|
66 |
+
### How to use
|
67 |
+
You can use this model with Transformers *pipeline* for NER.
|
68 |
+
```python
|
69 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
70 |
+
from transformers import pipeline
|
71 |
+
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("Leo97/KoELECTRA-small-v3-modu-ner")
|
73 |
+
model = AutoModelForTokenClassification.from_pretrained("Leo97/KoELECTRA-small-v3-modu-ner")
|
74 |
+
ner = pipeline("ner", model=model, tokenizer=tokenizer)
|
75 |
+
|
76 |
+
example = "서울역으로 안내해줘."
|
77 |
+
ner_results = ner(example)
|
78 |
+
print(ner_results)
|
79 |
+
```
|
80 |
|
81 |
## Training and evaluation data
|
82 |
|