Leo97 commited on
Commit
be84008
·
1 Parent(s): ddb9b8b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: KoELECTRA-small-v3-modu-ner
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # KoELECTRA-small-v3-modu-ner
18
+
19
+ This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1354
22
+ - Precision: 0.8084
23
+ - Recall: 0.8311
24
+ - F1: 0.8196
25
+ - Accuracy: 0.9599
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 64
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 7575
51
+ - num_epochs: 10
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 3788 | 0.2991 | 0.6481 | 0.6373 | 0.6426 | 0.9229 |
59
+ | No log | 2.0 | 7576 | 0.1904 | 0.7479 | 0.7418 | 0.7448 | 0.9438 |
60
+ | No log | 3.0 | 11364 | 0.1620 | 0.7577 | 0.7940 | 0.7754 | 0.9502 |
61
+ | No log | 4.0 | 15152 | 0.1505 | 0.7890 | 0.7982 | 0.7936 | 0.9544 |
62
+ | No log | 5.0 | 18940 | 0.1417 | 0.7905 | 0.8163 | 0.8032 | 0.9563 |
63
+ | No log | 6.0 | 22728 | 0.1392 | 0.7914 | 0.8250 | 0.8079 | 0.9572 |
64
+ | No log | 7.0 | 26516 | 0.1363 | 0.8060 | 0.8231 | 0.8144 | 0.9589 |
65
+ | No log | 8.0 | 30304 | 0.1367 | 0.8035 | 0.8294 | 0.8162 | 0.9592 |
66
+ | No log | 9.0 | 34092 | 0.1349 | 0.8085 | 0.8296 | 0.8189 | 0.9597 |
67
+ | 0.2299 | 10.0 | 37880 | 0.1354 | 0.8084 | 0.8311 | 0.8196 | 0.9599 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.27.3
73
+ - Pytorch 1.13.1+cu116
74
+ - Datasets 2.10.1
75
+ - Tokenizers 0.13.2