update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: KoELECTRA-small-v3-modu-ner
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# KoELECTRA-small-v3-modu-ner
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1354
|
22 |
+
- Precision: 0.8084
|
23 |
+
- Recall: 0.8311
|
24 |
+
- F1: 0.8196
|
25 |
+
- Accuracy: 0.9599
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 7575
|
51 |
+
- num_epochs: 10
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 3788 | 0.2991 | 0.6481 | 0.6373 | 0.6426 | 0.9229 |
|
59 |
+
| No log | 2.0 | 7576 | 0.1904 | 0.7479 | 0.7418 | 0.7448 | 0.9438 |
|
60 |
+
| No log | 3.0 | 11364 | 0.1620 | 0.7577 | 0.7940 | 0.7754 | 0.9502 |
|
61 |
+
| No log | 4.0 | 15152 | 0.1505 | 0.7890 | 0.7982 | 0.7936 | 0.9544 |
|
62 |
+
| No log | 5.0 | 18940 | 0.1417 | 0.7905 | 0.8163 | 0.8032 | 0.9563 |
|
63 |
+
| No log | 6.0 | 22728 | 0.1392 | 0.7914 | 0.8250 | 0.8079 | 0.9572 |
|
64 |
+
| No log | 7.0 | 26516 | 0.1363 | 0.8060 | 0.8231 | 0.8144 | 0.9589 |
|
65 |
+
| No log | 8.0 | 30304 | 0.1367 | 0.8035 | 0.8294 | 0.8162 | 0.9592 |
|
66 |
+
| No log | 9.0 | 34092 | 0.1349 | 0.8085 | 0.8296 | 0.8189 | 0.9597 |
|
67 |
+
| 0.2299 | 10.0 | 37880 | 0.1354 | 0.8084 | 0.8311 | 0.8196 | 0.9599 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.27.3
|
73 |
+
- Pytorch 1.13.1+cu116
|
74 |
+
- Datasets 2.10.1
|
75 |
+
- Tokenizers 0.13.2
|