update model card README.md
Browse files
README.md
CHANGED
@@ -9,77 +9,32 @@ metrics:
|
|
9 |
model-index:
|
10 |
- name: KoELECTRA-small-v3-modu-ner
|
11 |
results: []
|
12 |
-
language:
|
13 |
-
- ko
|
14 |
-
pipeline_tag: token-classification
|
15 |
-
widget:
|
16 |
-
- text: "서울역으로 안내해줘."
|
17 |
-
example_title: "Example 1"
|
18 |
-
- text: "에어컨 온도 3도 올려줘."
|
19 |
-
example_title: "Example 2"
|
20 |
-
- text: "아이유 노래 검색해줘."
|
21 |
-
example_title: "Example 3"
|
22 |
---
|
23 |
|
|
|
|
|
|
|
24 |
# KoELECTRA-small-v3-modu-ner
|
25 |
|
26 |
This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset.
|
27 |
It achieves the following results on the evaluation set:
|
28 |
-
- Loss: 0.
|
29 |
-
- Precision: 0.
|
30 |
-
- Recall: 0.
|
31 |
-
- F1: 0.
|
32 |
-
- Accuracy: 0.
|
33 |
|
34 |
## Model description
|
35 |
|
36 |
-
|
37 |
-
- B-(begin) : 개체명이 시작할 때
|
38 |
-
- I-(inside) : 토큰이 개체명 중간에 있을 때
|
39 |
-
- O(outside) : 토큰이 개체명이 아닐 경우
|
40 |
-
|
41 |
-
한국정보통신기술협회(TTA) 대분류 기준을 따르는 15 가지의 태그셋
|
42 |
-
|
43 |
-
| 분류 | 표기 | 정의 |
|
44 |
-
|:------------:|:---:|:-----------|
|
45 |
-
| ARTIFACTS | AF | 사람에 의해 창조된 인공물로 문화재, 건물, 악기, 도로, 무기, 운송수단, 작품명, 공산품명이 모두 이에 해당 |
|
46 |
-
| ANIMAL | AM | 사람을 제외한 짐승 |
|
47 |
-
| CIVILIZATION | CV | 문명/문화 |
|
48 |
-
| DATE | DT | 기간 및 계절, 시기/시대 |
|
49 |
-
| EVENT | EV | 특정 사건/사고/행사 명칭 |
|
50 |
-
| STUDY_FIELD | FD | 학문 분야, 학파 및 유파 |
|
51 |
-
| LOCATION | LC | 지역/장소와 지형/지리 명칭 등을 모두 포함 |
|
52 |
-
| MATERIAL | MT | 원소 및 금속, 암석/보석, 화학물질 |
|
53 |
-
| ORGANIZATION | OG | 기관 및 단체 명칭 |
|
54 |
-
| PERSON | PS | 인명 및 인물의 별칭 (유사 인물 명칭 포함) |
|
55 |
-
| PLANT | PT | 꽃/나무, 육지식물, 해초류, 버섯류, 이끼류 |
|
56 |
-
| QUANTITY | QT | 수량/분량, 순서/순차, 수사로 이루어진 표현 |
|
57 |
-
| TIME | TI | 시계상으로 나타나는 시/시각, 시간 범위 |
|
58 |
-
| TERM | TM | 타 개체명에서 정의된 세부 개체명 이외의 개체명 |
|
59 |
-
| THEORY | TR | 특정 이론, 법칙 원리 등 |
|
60 |
|
61 |
## Intended uses & limitations
|
62 |
|
63 |
-
|
64 |
-
You can use this model with Transformers *pipeline* for NER.
|
65 |
-
```python
|
66 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
67 |
-
from transformers import pipeline
|
68 |
-
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained("Leo97/KoELECTRA-small-v3-modu-ner")
|
70 |
-
model = AutoModelForTokenClassification.from_pretrained("Leo97/KoELECTRA-small-v3-modu-ner")
|
71 |
-
ner = pipeline("ner", model=model, tokenizer=tokenizer)
|
72 |
-
|
73 |
-
example = "서울역으로 안내해줘."
|
74 |
-
ner_results = ner(example)
|
75 |
-
print(ner_results)
|
76 |
-
```
|
77 |
|
78 |
## Training and evaluation data
|
79 |
|
80 |
-
|
81 |
-
- 문화체육관광부 > 국립국어원 > 모두의 말뭉치 > 개체명 분석 말뭉치 2021
|
82 |
-
- https://corpus.korean.go.kr/request/reausetMain.do
|
83 |
|
84 |
## Training procedure
|
85 |
|
@@ -92,34 +47,34 @@ The following hyperparameters were used during training:
|
|
92 |
- seed: 42
|
93 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
94 |
- lr_scheduler_type: linear
|
95 |
-
- lr_scheduler_warmup_steps:
|
96 |
-
- num_epochs:
|
97 |
- mixed_precision_training: Native AMP
|
98 |
|
99 |
### Training results
|
100 |
|
101 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
102 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
103 |
-
| No log | 1.0 | 3788 | 0.
|
104 |
-
| No log | 2.0 | 7576 | 0.
|
105 |
-
| No log | 3.0 | 11364 | 0.
|
106 |
-
| No log | 4.0 | 15152 | 0.
|
107 |
-
| No log | 5.0 | 18940 | 0.
|
108 |
-
| No log | 6.0 | 22728 | 0.
|
109 |
-
| No log | 7.0 | 26516 | 0.
|
110 |
-
| No log | 8.0 | 30304 | 0.
|
111 |
-
| No log | 9.0 | 34092 | 0.
|
112 |
-
|
|
113 |
-
|
|
114 |
-
| No log |
|
115 |
-
| No log |
|
116 |
-
|
|
117 |
-
|
|
118 |
-
| No log |
|
119 |
-
| No log |
|
120 |
-
| No log |
|
121 |
-
| No log |
|
122 |
-
| 0.
|
123 |
|
124 |
|
125 |
### Framework versions
|
@@ -127,4 +82,4 @@ The following hyperparameters were used during training:
|
|
127 |
- Transformers 4.27.4
|
128 |
- Pytorch 2.0.0+cu118
|
129 |
- Datasets 2.11.0
|
130 |
-
- Tokenizers 0.13.
|
|
|
9 |
model-index:
|
10 |
- name: KoELECTRA-small-v3-modu-ner
|
11 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
# KoELECTRA-small-v3-modu-ner
|
18 |
|
19 |
This model is a fine-tuned version of [monologg/koelectra-small-v3-discriminator](https://huggingface.co/monologg/koelectra-small-v3-discriminator) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1431
|
22 |
+
- Precision: 0.8232
|
23 |
+
- Recall: 0.8449
|
24 |
+
- F1: 0.8339
|
25 |
+
- Accuracy: 0.9628
|
26 |
|
27 |
## Model description
|
28 |
|
29 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Intended uses & limitations
|
32 |
|
33 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Training and evaluation data
|
36 |
|
37 |
+
More information needed
|
|
|
|
|
38 |
|
39 |
## Training procedure
|
40 |
|
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 15151
|
51 |
+
- num_epochs: 20
|
52 |
- mixed_precision_training: Native AMP
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 3788 | 0.3978 | 0.5986 | 0.5471 | 0.5717 | 0.9087 |
|
59 |
+
| No log | 2.0 | 7576 | 0.2319 | 0.6986 | 0.6953 | 0.6969 | 0.9345 |
|
60 |
+
| No log | 3.0 | 11364 | 0.1838 | 0.7363 | 0.7612 | 0.7486 | 0.9444 |
|
61 |
+
| No log | 4.0 | 15152 | 0.1610 | 0.7762 | 0.7745 | 0.7754 | 0.9509 |
|
62 |
+
| No log | 5.0 | 18940 | 0.1475 | 0.7862 | 0.8011 | 0.7936 | 0.9545 |
|
63 |
+
| No log | 6.0 | 22728 | 0.1417 | 0.7857 | 0.8181 | 0.8016 | 0.9563 |
|
64 |
+
| No log | 7.0 | 26516 | 0.1366 | 0.8022 | 0.8196 | 0.8108 | 0.9584 |
|
65 |
+
| No log | 8.0 | 30304 | 0.1346 | 0.8093 | 0.8236 | 0.8164 | 0.9596 |
|
66 |
+
| No log | 9.0 | 34092 | 0.1328 | 0.8085 | 0.8299 | 0.8190 | 0.9602 |
|
67 |
+
| No log | 10.0 | 37880 | 0.1332 | 0.8110 | 0.8368 | 0.8237 | 0.9608 |
|
68 |
+
| No log | 11.0 | 41668 | 0.1323 | 0.8157 | 0.8347 | 0.8251 | 0.9612 |
|
69 |
+
| No log | 12.0 | 45456 | 0.1353 | 0.8118 | 0.8402 | 0.8258 | 0.9611 |
|
70 |
+
| No log | 13.0 | 49244 | 0.1370 | 0.8152 | 0.8416 | 0.8282 | 0.9616 |
|
71 |
+
| No log | 14.0 | 53032 | 0.1368 | 0.8164 | 0.8415 | 0.8287 | 0.9616 |
|
72 |
+
| No log | 15.0 | 56820 | 0.1378 | 0.8187 | 0.8438 | 0.8310 | 0.9621 |
|
73 |
+
| No log | 16.0 | 60608 | 0.1389 | 0.8217 | 0.8438 | 0.8326 | 0.9626 |
|
74 |
+
| No log | 17.0 | 64396 | 0.1380 | 0.8266 | 0.8426 | 0.8345 | 0.9631 |
|
75 |
+
| No log | 18.0 | 68184 | 0.1428 | 0.8216 | 0.8445 | 0.8329 | 0.9625 |
|
76 |
+
| No log | 19.0 | 71972 | 0.1431 | 0.8232 | 0.8455 | 0.8342 | 0.9628 |
|
77 |
+
| 0.1712 | 20.0 | 75760 | 0.1431 | 0.8232 | 0.8449 | 0.8339 | 0.9628 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
82 |
- Transformers 4.27.4
|
83 |
- Pytorch 2.0.0+cu118
|
84 |
- Datasets 2.11.0
|
85 |
+
- Tokenizers 0.13.3
|