--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: KoELECTRA-small-v3-modu-ner results: [] --- # KoELECTRA-small-v3-modu-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1443 - Precision: 0.8176 - Recall: 0.8401 - F1: 0.8287 - Accuracy: 0.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3787 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 3788 | 0.1511 | 0.8095 | 0.8257 | 0.8176 | 0.9594 | | No log | 2.0 | 7576 | 0.1461 | 0.8121 | 0.8339 | 0.8228 | 0.9600 | | No log | 3.0 | 11364 | 0.1417 | 0.8139 | 0.8372 | 0.8254 | 0.9607 | | No log | 4.0 | 15152 | 0.1418 | 0.8238 | 0.8346 | 0.8292 | 0.9617 | | 0.0748 | 5.0 | 18940 | 0.1443 | 0.8176 | 0.8401 | 0.8287 | 0.9615 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2