--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: KoELECTRA-small-v3-modu-ner results: [] --- # KoELECTRA-small-v3-modu-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1370 - Precision: 0.8146 - Recall: 0.8349 - F1: 0.8246 - Accuracy: 0.9609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2272 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 3788 | 0.1367 | 0.8089 | 0.8240 | 0.8164 | 0.9595 | | No log | 2.0 | 7576 | 0.1345 | 0.8130 | 0.8331 | 0.8229 | 0.9604 | | 0.0953 | 3.0 | 11364 | 0.1370 | 0.8146 | 0.8349 | 0.8246 | 0.9609 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2