---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:216
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Sophie why are you pressured?
sentences:
- Sophie Are you pressured?
- Did you place the scarf in the fireplace?
- A marked Globe.
- source_sentence: Because of the red stain from the dish
sentences:
- Are you using my slippers?
- Do you know this book?
- There was a red stain on the dish
- source_sentence: Outside
sentences:
- To grant the wish of having adventure
- Let's look inside
- Let's go outside
- source_sentence: Actually I want a candle
sentences:
- Is that a cloth on the tree?
- Did you have a beef stew for dinner?
- Give me a candle
- source_sentence: I found a flower pot.
sentences:
- Last night?
- I found flowers.
- Do you know this picture?
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: custom arc semantics data
type: custom-arc-semantics-data
metrics:
- type: cosine_accuracy
value: 0.9818181818181818
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.26917901635169983
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9908256880733944
name: Cosine F1
- type: cosine_f1_threshold
value: 0.26917901635169983
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 0.9818181818181818
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: dot_accuracy
value: 0.9818181818181818
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.2691790461540222
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9908256880733944
name: Dot F1
- type: dot_f1_threshold
value: 0.2691790461540222
name: Dot F1 Threshold
- type: dot_precision
value: 1.0
name: Dot Precision
- type: dot_recall
value: 0.9818181818181818
name: Dot Recall
- type: dot_ap
value: 1.0
name: Dot Ap
- type: manhattan_accuracy
value: 0.9818181818181818
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 18.48493194580078
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9908256880733944
name: Manhattan F1
- type: manhattan_f1_threshold
value: 18.48493194580078
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1.0
name: Manhattan Precision
- type: manhattan_recall
value: 0.9818181818181818
name: Manhattan Recall
- type: manhattan_ap
value: 1.0
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9818181818181818
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 1.2088721990585327
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9908256880733944
name: Euclidean F1
- type: euclidean_f1_threshold
value: 1.2088721990585327
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1.0
name: Euclidean Precision
- type: euclidean_recall
value: 0.9818181818181818
name: Euclidean Recall
- type: euclidean_ap
value: 1.0
name: Euclidean Ap
- type: max_accuracy
value: 0.9818181818181818
name: Max Accuracy
- type: max_accuracy_threshold
value: 18.48493194580078
name: Max Accuracy Threshold
- type: max_f1
value: 0.9908256880733944
name: Max F1
- type: max_f1_threshold
value: 18.48493194580078
name: Max F1 Threshold
- type: max_precision
value: 1.0
name: Max Precision
- type: max_recall
value: 0.9818181818181818
name: Max Recall
- type: max_ap
value: 1.0
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
# Run inference
sentences = [
'I found a flower pot.',
'I found flowers.',
'Do you know this picture?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `custom-arc-semantics-data`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:--------|
| cosine_accuracy | 0.9818 |
| cosine_accuracy_threshold | 0.2692 |
| cosine_f1 | 0.9908 |
| cosine_f1_threshold | 0.2692 |
| cosine_precision | 1.0 |
| cosine_recall | 0.9818 |
| cosine_ap | 1.0 |
| dot_accuracy | 0.9818 |
| dot_accuracy_threshold | 0.2692 |
| dot_f1 | 0.9908 |
| dot_f1_threshold | 0.2692 |
| dot_precision | 1.0 |
| dot_recall | 0.9818 |
| dot_ap | 1.0 |
| manhattan_accuracy | 0.9818 |
| manhattan_accuracy_threshold | 18.4849 |
| manhattan_f1 | 0.9908 |
| manhattan_f1_threshold | 18.4849 |
| manhattan_precision | 1.0 |
| manhattan_recall | 0.9818 |
| manhattan_ap | 1.0 |
| euclidean_accuracy | 0.9818 |
| euclidean_accuracy_threshold | 1.2089 |
| euclidean_f1 | 0.9908 |
| euclidean_f1_threshold | 1.2089 |
| euclidean_precision | 1.0 |
| euclidean_recall | 0.9818 |
| euclidean_ap | 1.0 |
| max_accuracy | 0.9818 |
| max_accuracy_threshold | 18.4849 |
| max_f1 | 0.9908 |
| max_f1_threshold | 18.4849 |
| max_precision | 1.0 |
| max_recall | 0.9818 |
| **max_ap** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 216 training samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details |
Let's search inside
| Let's look inside
| 1
|
| Do you see your scarf in the wagon?
| Is your scarf in the wagon?
| 1
|
| Scarf on the tree.
| Is that a scarf, the one on the tree?
| 1
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 55 evaluation samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | A candle
| I want a candle
| 1
|
| I did
| I did it
| 1
|
| When you had dinner
| Before cooking dinner
| 1
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 13
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters