---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:965
- loss:CoSENTLoss
widget:
- source_sentence: To test the spell
sentences:
- Are you a magic spell user?
- What happened?
- Who is your daughter?
- source_sentence: Someone used a magic spell to change the flower into a plush
sentences:
- Have you been to a well?
- These Bottles.
- Magic is on the plush
- source_sentence: What spells can the villagers use?
sentences:
- Jack
- Do you know a mage who changes shape of material?
- These lillies are important.
- source_sentence: Why are you pressured?
sentences:
- A picture.
- Sophie why are you pressured?
- Change the look of object
- source_sentence: I found lillies.
sentences:
- Someone who can change item
- These lillies.
- Are you plotting?
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: custom arc semantics data en
type: custom-arc-semantics-data-en
metrics:
- type: cosine_accuracy
value: 0.8756476683937824
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.3563339114189148
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8928571428571428
name: Cosine F1
- type: cosine_f1_threshold
value: 0.3563339114189148
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.847457627118644
name: Cosine Precision
- type: cosine_recall
value: 0.9433962264150944
name: Cosine Recall
- type: cosine_ap
value: 0.93108620584637
name: Cosine Ap
- type: dot_accuracy
value: 0.8756476683937824
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.3563339114189148
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8928571428571428
name: Dot F1
- type: dot_f1_threshold
value: 0.3563339114189148
name: Dot F1 Threshold
- type: dot_precision
value: 0.847457627118644
name: Dot Precision
- type: dot_recall
value: 0.9433962264150944
name: Dot Recall
- type: dot_ap
value: 0.93108620584637
name: Dot Ap
- type: manhattan_accuracy
value: 0.8756476683937824
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 17.202983856201172
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8909090909090909
name: Manhattan F1
- type: manhattan_f1_threshold
value: 17.202983856201172
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8596491228070176
name: Manhattan Precision
- type: manhattan_recall
value: 0.9245283018867925
name: Manhattan Recall
- type: manhattan_ap
value: 0.9302290531425504
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8756476683937824
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 1.1346065998077393
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8928571428571428
name: Euclidean F1
- type: euclidean_f1_threshold
value: 1.1346065998077393
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.847457627118644
name: Euclidean Precision
- type: euclidean_recall
value: 0.9433962264150944
name: Euclidean Recall
- type: euclidean_ap
value: 0.93108620584637
name: Euclidean Ap
- type: max_accuracy
value: 0.8756476683937824
name: Max Accuracy
- type: max_accuracy_threshold
value: 17.202983856201172
name: Max Accuracy Threshold
- type: max_f1
value: 0.8928571428571428
name: Max F1
- type: max_f1_threshold
value: 17.202983856201172
name: Max F1 Threshold
- type: max_precision
value: 0.8596491228070176
name: Max Precision
- type: max_recall
value: 0.9433962264150944
name: Max Recall
- type: max_ap
value: 0.93108620584637
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
# Run inference
sentences = [
'I found lillies.',
'These lillies.',
'Are you plotting?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `custom-arc-semantics-data-en`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8756 |
| cosine_accuracy_threshold | 0.3563 |
| cosine_f1 | 0.8929 |
| cosine_f1_threshold | 0.3563 |
| cosine_precision | 0.8475 |
| cosine_recall | 0.9434 |
| cosine_ap | 0.9311 |
| dot_accuracy | 0.8756 |
| dot_accuracy_threshold | 0.3563 |
| dot_f1 | 0.8929 |
| dot_f1_threshold | 0.3563 |
| dot_precision | 0.8475 |
| dot_recall | 0.9434 |
| dot_ap | 0.9311 |
| manhattan_accuracy | 0.8756 |
| manhattan_accuracy_threshold | 17.203 |
| manhattan_f1 | 0.8909 |
| manhattan_f1_threshold | 17.203 |
| manhattan_precision | 0.8596 |
| manhattan_recall | 0.9245 |
| manhattan_ap | 0.9302 |
| euclidean_accuracy | 0.8756 |
| euclidean_accuracy_threshold | 1.1346 |
| euclidean_f1 | 0.8929 |
| euclidean_f1_threshold | 1.1346 |
| euclidean_precision | 0.8475 |
| euclidean_recall | 0.9434 |
| euclidean_ap | 0.9311 |
| max_accuracy | 0.8756 |
| max_accuracy_threshold | 17.203 |
| max_f1 | 0.8929 |
| max_f1_threshold | 17.203 |
| max_precision | 0.8596 |
| max_recall | 0.9434 |
| **max_ap** | **0.9311** |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 965 training samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 965 samples:
| | text1 | text2 | label |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
What did you eat last night?
| What did you cook?
| 1
|
| I don't like you
| I hate you
| 1
|
| Tell me about theier magic
| Elder
| 0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 965 evaluation samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 965 samples:
| | text1 | text2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | To test the spell
| Who is your daughter?
| 0
|
| I think this painting is important.
| A book.
| 0
|
| Is the scarf in the fireplace?
| Candle
| 0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters