--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:965 - loss:CoSENTLoss widget: - source_sentence: To test the spell sentences: - Are you a magic spell user? - What happened? - Who is your daughter? - source_sentence: Someone used a magic spell to change the flower into a plush sentences: - Have you been to a well? - These Bottles. - Magic is on the plush - source_sentence: What spells can the villagers use? sentences: - Jack - Do you know a mage who changes shape of material? - These lillies are important. - source_sentence: Why are you pressured? sentences: - A picture. - Sophie why are you pressured? - Change the look of object - source_sentence: I found lillies. sentences: - Someone who can change item - These lillies. - Are you plotting? model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: custom arc semantics data en type: custom-arc-semantics-data-en metrics: - type: cosine_accuracy value: 0.8756476683937824 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.3563339114189148 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8928571428571428 name: Cosine F1 - type: cosine_f1_threshold value: 0.3563339114189148 name: Cosine F1 Threshold - type: cosine_precision value: 0.847457627118644 name: Cosine Precision - type: cosine_recall value: 0.9433962264150944 name: Cosine Recall - type: cosine_ap value: 0.93108620584637 name: Cosine Ap - type: dot_accuracy value: 0.8756476683937824 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.3563339114189148 name: Dot Accuracy Threshold - type: dot_f1 value: 0.8928571428571428 name: Dot F1 - type: dot_f1_threshold value: 0.3563339114189148 name: Dot F1 Threshold - type: dot_precision value: 0.847457627118644 name: Dot Precision - type: dot_recall value: 0.9433962264150944 name: Dot Recall - type: dot_ap value: 0.93108620584637 name: Dot Ap - type: manhattan_accuracy value: 0.8756476683937824 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 17.202983856201172 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.8909090909090909 name: Manhattan F1 - type: manhattan_f1_threshold value: 17.202983856201172 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8596491228070176 name: Manhattan Precision - type: manhattan_recall value: 0.9245283018867925 name: Manhattan Recall - type: manhattan_ap value: 0.9302290531425504 name: Manhattan Ap - type: euclidean_accuracy value: 0.8756476683937824 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 1.1346065998077393 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.8928571428571428 name: Euclidean F1 - type: euclidean_f1_threshold value: 1.1346065998077393 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.847457627118644 name: Euclidean Precision - type: euclidean_recall value: 0.9433962264150944 name: Euclidean Recall - type: euclidean_ap value: 0.93108620584637 name: Euclidean Ap - type: max_accuracy value: 0.8756476683937824 name: Max Accuracy - type: max_accuracy_threshold value: 17.202983856201172 name: Max Accuracy Threshold - type: max_f1 value: 0.8928571428571428 name: Max F1 - type: max_f1_threshold value: 17.202983856201172 name: Max F1 Threshold - type: max_precision value: 0.8596491228070176 name: Max Precision - type: max_recall value: 0.9433962264150944 name: Max Recall - type: max_ap value: 0.93108620584637 name: Max Ap --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc") # Run inference sentences = [ 'I found lillies.', 'These lillies.', 'Are you plotting?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `custom-arc-semantics-data-en` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.8756 | | cosine_accuracy_threshold | 0.3563 | | cosine_f1 | 0.8929 | | cosine_f1_threshold | 0.3563 | | cosine_precision | 0.8475 | | cosine_recall | 0.9434 | | cosine_ap | 0.9311 | | dot_accuracy | 0.8756 | | dot_accuracy_threshold | 0.3563 | | dot_f1 | 0.8929 | | dot_f1_threshold | 0.3563 | | dot_precision | 0.8475 | | dot_recall | 0.9434 | | dot_ap | 0.9311 | | manhattan_accuracy | 0.8756 | | manhattan_accuracy_threshold | 17.203 | | manhattan_f1 | 0.8909 | | manhattan_f1_threshold | 17.203 | | manhattan_precision | 0.8596 | | manhattan_recall | 0.9245 | | manhattan_ap | 0.9302 | | euclidean_accuracy | 0.8756 | | euclidean_accuracy_threshold | 1.1346 | | euclidean_f1 | 0.8929 | | euclidean_f1_threshold | 1.1346 | | euclidean_precision | 0.8475 | | euclidean_recall | 0.9434 | | euclidean_ap | 0.9311 | | max_accuracy | 0.8756 | | max_accuracy_threshold | 17.203 | | max_f1 | 0.8929 | | max_f1_threshold | 17.203 | | max_precision | 0.8596 | | max_recall | 0.9434 | | **max_ap** | **0.9311** | ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 965 training samples * Columns: text1, text2, and label * Approximate statistics based on the first 965 samples: | | text1 | text2 | label | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:------------------------------------------|:--------------------------------|:---------------| | What did you eat last night? | What did you cook? | 1 | | I don't like you | I hate you | 1 | | Tell me about theier magic | Elder | 0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### csv * Dataset: csv * Size: 965 evaluation samples * Columns: text1, text2, and label * Approximate statistics based on the first 965 samples: | | text1 | text2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:-------------------------------------------------|:-----------------------------------|:---------------| | To test the spell | Who is your daughter? | 0 | | I think this painting is important. | A book. | 0 | | Is the scarf in the fireplace? | Candle | 0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-en_max_ap | |:-----:|:----:|:-------------:|:------:|:-----------------------------------:| | None | 0 | - | - | 0.8832 | | 1.0 | 97 | 2.266 | 2.0829 | 0.9252 | | 2.0 | 194 | 1.0666 | 1.8713 | 0.9311 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.0 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```