Add new SentenceTransformer model.
Browse files- README.md +144 -145
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -45,34 +45,34 @@ tags:
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
-
- dataset_size:
|
49 |
-
- loss:
|
50 |
widget:
|
51 |
-
- source_sentence:
|
52 |
sentences:
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
- source_sentence:
|
57 |
sentences:
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
-
- source_sentence:
|
62 |
sentences:
|
63 |
-
-
|
64 |
-
-
|
65 |
-
-
|
66 |
-
- source_sentence:
|
67 |
sentences:
|
68 |
-
-
|
69 |
-
-
|
70 |
-
-
|
71 |
-
- source_sentence:
|
72 |
sentences:
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
78 |
results:
|
@@ -84,109 +84,109 @@ model-index:
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
-
value: 0.
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
-
value: 0.
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
-
value:
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
-
value: 0.
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
-
value:
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
-
value: 0.
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
-
value: 0.
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
-
value: 0.
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
-
value: 0.
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
-
value:
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
-
value: 0.
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
-
value:
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
-
value: 0.
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
-
value:
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
-
value: 0.
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
-
value:
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
-
value:
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
-
value: 0.
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
-
value:
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
-
value: 0.
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
-
value: 1.
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
-
value: 0.
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
-
value: 1.
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
-
value:
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
-
value: 0.
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
-
value:
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
-
value: 0.
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
-
value:
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
-
value: 0.
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
-
value:
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
-
value:
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
-
value: 0.
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
-
value:
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
@@ -240,9 +240,9 @@ from sentence_transformers import SentenceTransformer
|
|
240 |
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2")
|
241 |
# Run inference
|
242 |
sentences = [
|
243 |
-
'
|
244 |
-
'
|
245 |
-
'
|
246 |
]
|
247 |
embeddings = model.encode(sentences)
|
248 |
print(embeddings.shape)
|
@@ -286,43 +286,43 @@ You can finetune this model on your own dataset.
|
|
286 |
* Dataset: `custom-arc-semantics-data`
|
287 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
288 |
|
289 |
-
| Metric | Value
|
290 |
-
|
291 |
-
| cosine_accuracy | 0.
|
292 |
-
| cosine_accuracy_threshold | 0.
|
293 |
-
| cosine_f1 | 0.
|
294 |
-
| cosine_f1_threshold | 0.
|
295 |
-
| cosine_precision |
|
296 |
-
| cosine_recall | 0.
|
297 |
-
| cosine_ap |
|
298 |
-
| dot_accuracy | 0.
|
299 |
-
| dot_accuracy_threshold | 0.
|
300 |
-
| dot_f1 | 0.
|
301 |
-
| dot_f1_threshold | 0.
|
302 |
-
| dot_precision |
|
303 |
-
| dot_recall | 0.
|
304 |
-
| dot_ap |
|
305 |
-
| manhattan_accuracy | 0.
|
306 |
-
| manhattan_accuracy_threshold |
|
307 |
-
| manhattan_f1 | 0.
|
308 |
-
| manhattan_f1_threshold |
|
309 |
-
| manhattan_precision |
|
310 |
-
| manhattan_recall | 0.
|
311 |
-
| manhattan_ap |
|
312 |
-
| euclidean_accuracy | 0.
|
313 |
-
| euclidean_accuracy_threshold | 1.
|
314 |
-
| euclidean_f1 | 0.
|
315 |
-
| euclidean_f1_threshold | 1.
|
316 |
-
| euclidean_precision |
|
317 |
-
| euclidean_recall | 0.
|
318 |
-
| euclidean_ap |
|
319 |
-
| max_accuracy | 0.
|
320 |
-
| max_accuracy_threshold |
|
321 |
-
| max_f1 | 0.
|
322 |
-
| max_f1_threshold |
|
323 |
-
| max_precision |
|
324 |
-
| max_recall | 0.
|
325 |
-
| **max_ap** | **
|
326 |
|
327 |
<!--
|
328 |
## Bias, Risks and Limitations
|
@@ -343,24 +343,24 @@ You can finetune this model on your own dataset.
|
|
343 |
#### Unnamed Dataset
|
344 |
|
345 |
|
346 |
-
* Size:
|
347 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
348 |
* Approximate statistics based on the first 1000 samples:
|
349 |
-
| | text1
|
350 |
-
|
351 |
-
| type | string
|
352 |
-
| details | <ul><li>min: 3 tokens</li><li>mean: 7.
|
353 |
* Samples:
|
354 |
-
| text1
|
355 |
-
|
356 |
-
| <code>
|
357 |
-
| <code>
|
358 |
-
| <code>
|
359 |
-
* Loss: [<code>
|
360 |
```json
|
361 |
{
|
362 |
"scale": 20.0,
|
363 |
-
"similarity_fct": "
|
364 |
}
|
365 |
```
|
366 |
|
@@ -369,24 +369,24 @@ You can finetune this model on your own dataset.
|
|
369 |
#### Unnamed Dataset
|
370 |
|
371 |
|
372 |
-
* Size:
|
373 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
374 |
* Approximate statistics based on the first 1000 samples:
|
375 |
-
| | text1 | text2 | label
|
376 |
-
|
377 |
-
| type | string | string | int
|
378 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
379 |
* Samples:
|
380 |
-
| text1
|
381 |
-
|
382 |
-
| <code>
|
383 |
-
| <code>
|
384 |
-
| <code>
|
385 |
-
* Loss: [<code>
|
386 |
```json
|
387 |
{
|
388 |
"scale": 20.0,
|
389 |
-
"similarity_fct": "
|
390 |
}
|
391 |
```
|
392 |
|
@@ -520,28 +520,28 @@ You can finetune this model on your own dataset.
|
|
520 |
### Training Logs
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
522 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
523 |
-
| None | 0 | - | - |
|
524 |
-
| 1.0 |
|
525 |
-
| 2.0 |
|
526 |
-
| 3.0 |
|
527 |
-
| 4.0 |
|
528 |
-
| 5.0 |
|
529 |
-
| 6.0 |
|
530 |
-
| 7.0 |
|
531 |
-
| 8.0 |
|
532 |
-
| 9.0 |
|
533 |
-
| 10.0 |
|
534 |
-
| 11.0 |
|
535 |
-
| 12.0 |
|
536 |
-
| 13.0 |
|
537 |
|
538 |
|
539 |
### Framework Versions
|
540 |
- Python: 3.10.14
|
541 |
- Sentence Transformers: 3.0.1
|
542 |
- Transformers: 4.44.2
|
543 |
-
- PyTorch: 2.4.
|
544 |
-
- Accelerate: 0.34.
|
545 |
- Datasets: 2.20.0
|
546 |
- Tokenizers: 0.19.1
|
547 |
|
@@ -562,15 +562,14 @@ You can finetune this model on your own dataset.
|
|
562 |
}
|
563 |
```
|
564 |
|
565 |
-
####
|
566 |
```bibtex
|
567 |
-
@
|
568 |
-
title={
|
569 |
-
author={
|
570 |
-
year={
|
571 |
-
|
572 |
-
|
573 |
-
primaryClass={cs.CL}
|
574 |
}
|
575 |
```
|
576 |
|
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
+
- dataset_size:560
|
49 |
+
- loss:CoSENTLoss
|
50 |
widget:
|
51 |
+
- source_sentence: Let's search inside
|
52 |
sentences:
|
53 |
+
- Stuffed animal
|
54 |
+
- Let's look inside
|
55 |
+
- What is worse?
|
56 |
+
- source_sentence: I want a torch
|
57 |
sentences:
|
58 |
+
- What do you think of Spike
|
59 |
+
- Actually I want a torch
|
60 |
+
- Why candle?
|
61 |
+
- source_sentence: Magic trace
|
62 |
sentences:
|
63 |
+
- A sword.
|
64 |
+
- ' Why is he so tiny?'
|
65 |
+
- 'The flower is changed into flower. '
|
66 |
+
- source_sentence: Did you use illusion?
|
67 |
sentences:
|
68 |
+
- Do you use illusion?
|
69 |
+
- You are a cat?
|
70 |
+
- It's Toby
|
71 |
+
- source_sentence: Do you see your scarf in the watering can?
|
72 |
sentences:
|
73 |
+
- What is the Weeping Tree?
|
74 |
+
- Are these your footprints?
|
75 |
+
- Magic user
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
78 |
results:
|
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
+
value: 0.9285714285714286
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
+
value: 0.42927420139312744
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
+
value: 0.9425287356321839
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
+
value: 0.2269928753376007
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
+
value: 0.9111111111111111
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
+
value: 0.9761904761904762
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
+
value: 0.9720863676601571
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
+
value: 0.9285714285714286
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
+
value: 0.42927438020706177
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
+
value: 0.9425287356321839
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
+
value: 0.22699296474456787
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
+
value: 0.9111111111111111
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
+
value: 0.9761904761904762
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
+
value: 0.9720863676601571
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
+
value: 0.9285714285714286
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
+
value: 16.630834579467773
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
+
value: 0.9431818181818182
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
+
value: 19.740108489990234
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
+
value: 0.9021739130434783
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
+
value: 0.9880952380952381
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
+
value: 0.9728353486982702
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
+
value: 0.9285714285714286
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
+
value: 1.068155288696289
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
+
value: 0.9425287356321839
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
+
value: 1.2433418035507202
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
+
value: 0.9111111111111111
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
+
value: 0.9761904761904762
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
+
value: 0.9720863676601571
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
+
value: 0.9285714285714286
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
+
value: 16.630834579467773
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
+
value: 0.9431818181818182
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
+
value: 19.740108489990234
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
+
value: 0.9111111111111111
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
+
value: 0.9880952380952381
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
+
value: 0.9728353486982702
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
|
|
240 |
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2")
|
241 |
# Run inference
|
242 |
sentences = [
|
243 |
+
'Do you see your scarf in the watering can?',
|
244 |
+
'Are these your footprints?',
|
245 |
+
'Magic user',
|
246 |
]
|
247 |
embeddings = model.encode(sentences)
|
248 |
print(embeddings.shape)
|
|
|
286 |
* Dataset: `custom-arc-semantics-data`
|
287 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
288 |
|
289 |
+
| Metric | Value |
|
290 |
+
|:-----------------------------|:-----------|
|
291 |
+
| cosine_accuracy | 0.9286 |
|
292 |
+
| cosine_accuracy_threshold | 0.4293 |
|
293 |
+
| cosine_f1 | 0.9425 |
|
294 |
+
| cosine_f1_threshold | 0.227 |
|
295 |
+
| cosine_precision | 0.9111 |
|
296 |
+
| cosine_recall | 0.9762 |
|
297 |
+
| cosine_ap | 0.9721 |
|
298 |
+
| dot_accuracy | 0.9286 |
|
299 |
+
| dot_accuracy_threshold | 0.4293 |
|
300 |
+
| dot_f1 | 0.9425 |
|
301 |
+
| dot_f1_threshold | 0.227 |
|
302 |
+
| dot_precision | 0.9111 |
|
303 |
+
| dot_recall | 0.9762 |
|
304 |
+
| dot_ap | 0.9721 |
|
305 |
+
| manhattan_accuracy | 0.9286 |
|
306 |
+
| manhattan_accuracy_threshold | 16.6308 |
|
307 |
+
| manhattan_f1 | 0.9432 |
|
308 |
+
| manhattan_f1_threshold | 19.7401 |
|
309 |
+
| manhattan_precision | 0.9022 |
|
310 |
+
| manhattan_recall | 0.9881 |
|
311 |
+
| manhattan_ap | 0.9728 |
|
312 |
+
| euclidean_accuracy | 0.9286 |
|
313 |
+
| euclidean_accuracy_threshold | 1.0682 |
|
314 |
+
| euclidean_f1 | 0.9425 |
|
315 |
+
| euclidean_f1_threshold | 1.2433 |
|
316 |
+
| euclidean_precision | 0.9111 |
|
317 |
+
| euclidean_recall | 0.9762 |
|
318 |
+
| euclidean_ap | 0.9721 |
|
319 |
+
| max_accuracy | 0.9286 |
|
320 |
+
| max_accuracy_threshold | 16.6308 |
|
321 |
+
| max_f1 | 0.9432 |
|
322 |
+
| max_f1_threshold | 19.7401 |
|
323 |
+
| max_precision | 0.9111 |
|
324 |
+
| max_recall | 0.9881 |
|
325 |
+
| **max_ap** | **0.9728** |
|
326 |
|
327 |
<!--
|
328 |
## Bias, Risks and Limitations
|
|
|
343 |
#### Unnamed Dataset
|
344 |
|
345 |
|
346 |
+
* Size: 560 training samples
|
347 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
348 |
* Approximate statistics based on the first 1000 samples:
|
349 |
+
| | text1 | text2 | label |
|
350 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
351 |
+
| type | string | string | int |
|
352 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.2 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.26 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~36.07%</li><li>1: ~63.93%</li></ul> |
|
353 |
* Samples:
|
354 |
+
| text1 | text2 | label |
|
355 |
+
|:-----------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
|
356 |
+
| <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
|
357 |
+
| <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
|
358 |
+
| <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
|
359 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
360 |
```json
|
361 |
{
|
362 |
"scale": 20.0,
|
363 |
+
"similarity_fct": "pairwise_cos_sim"
|
364 |
}
|
365 |
```
|
366 |
|
|
|
369 |
#### Unnamed Dataset
|
370 |
|
371 |
|
372 |
+
* Size: 140 evaluation samples
|
373 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
374 |
* Approximate statistics based on the first 1000 samples:
|
375 |
+
| | text1 | text2 | label |
|
376 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
377 |
+
| type | string | string | int |
|
378 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 6.99 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.29 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~40.00%</li><li>1: ~60.00%</li></ul> |
|
379 |
* Samples:
|
380 |
+
| text1 | text2 | label |
|
381 |
+
|:-----------------------------------------|:-----------------------------------------|:---------------|
|
382 |
+
| <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
|
383 |
+
| <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
|
384 |
+
| <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
|
385 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
386 |
```json
|
387 |
{
|
388 |
"scale": 20.0,
|
389 |
+
"similarity_fct": "pairwise_cos_sim"
|
390 |
}
|
391 |
```
|
392 |
|
|
|
520 |
### Training Logs
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
522 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
523 |
+
| None | 0 | - | - | 0.9254 |
|
524 |
+
| 1.0 | 70 | 2.9684 | 1.4087 | 0.9425 |
|
525 |
+
| 2.0 | 140 | 1.4461 | 1.0942 | 0.9629 |
|
526 |
+
| 3.0 | 210 | 0.6005 | 0.8398 | 0.9680 |
|
527 |
+
| 4.0 | 280 | 0.3021 | 0.7577 | 0.9703 |
|
528 |
+
| 5.0 | 350 | 0.2412 | 0.7216 | 0.9715 |
|
529 |
+
| 6.0 | 420 | 0.1816 | 0.7538 | 0.9722 |
|
530 |
+
| 7.0 | 490 | 0.1512 | 0.8049 | 0.9726 |
|
531 |
+
| 8.0 | 560 | 0.1208 | 0.7602 | 0.9726 |
|
532 |
+
| 9.0 | 630 | 0.0915 | 0.7286 | 0.9729 |
|
533 |
+
| 10.0 | 700 | 0.0553 | 0.7072 | 0.9729 |
|
534 |
+
| 11.0 | 770 | 0.0716 | 0.6984 | 0.9730 |
|
535 |
+
| 12.0 | 840 | 0.0297 | 0.7063 | 0.9725 |
|
536 |
+
| 13.0 | 910 | 0.0462 | 0.6997 | 0.9728 |
|
537 |
|
538 |
|
539 |
### Framework Versions
|
540 |
- Python: 3.10.14
|
541 |
- Sentence Transformers: 3.0.1
|
542 |
- Transformers: 4.44.2
|
543 |
+
- PyTorch: 2.4.1+cu121
|
544 |
+
- Accelerate: 0.34.2
|
545 |
- Datasets: 2.20.0
|
546 |
- Tokenizers: 0.19.1
|
547 |
|
|
|
562 |
}
|
563 |
```
|
564 |
|
565 |
+
#### CoSENTLoss
|
566 |
```bibtex
|
567 |
+
@online{kexuefm-8847,
|
568 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
569 |
+
author={Su Jianlin},
|
570 |
+
year={2022},
|
571 |
+
month={Jan},
|
572 |
+
url={https://kexue.fm/archives/8847},
|
|
|
573 |
}
|
574 |
```
|
575 |
|
config_sentence_transformers.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
"transformers": "4.44.2",
|
5 |
-
"pytorch": "2.4.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d9ab6b7472780e4b9271e02f535d125c33cef1b145ab2f8d3135ed97c72aea5
|
3 |
size 90864192
|