--- base_model: sentence-transformers/all-MiniLM-L6-v2 datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:560 - loss:MultipleNegativesRankingLoss widget: - source_sentence: Let's search inside sentences: - Stuffed animal - Let's look inside - What is worse? - source_sentence: I want a torch sentences: - What do you think of Spike - Actually I want a torch - Why candle? - source_sentence: Magic trace sentences: - A sword. - ' Why is he so tiny?' - 'The flower is changed into flower. ' - source_sentence: Did you use illusion? sentences: - Do you use illusion? - You are a cat? - It's Toby - source_sentence: Do you see your scarf in the watering can? sentences: - What is the Weeping Tree? - Are these your footprints? - Magic user model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: custom arc semantics data type: custom-arc-semantics-data metrics: - type: cosine_accuracy value: 0.85 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.49632835388183594 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8727272727272727 name: Cosine F1 - type: cosine_f1_threshold value: 0.48691314458847046 name: Cosine F1 Threshold - type: cosine_precision value: 0.8888888888888888 name: Cosine Precision - type: cosine_recall value: 0.8571428571428571 name: Cosine Recall - type: cosine_ap value: 0.927175101411552 name: Cosine Ap - type: dot_accuracy value: 0.85 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.4963283836841583 name: Dot Accuracy Threshold - type: dot_f1 value: 0.8727272727272727 name: Dot F1 - type: dot_f1_threshold value: 0.48691320419311523 name: Dot F1 Threshold - type: dot_precision value: 0.8888888888888888 name: Dot Precision - type: dot_recall value: 0.8571428571428571 name: Dot Recall - type: dot_ap value: 0.927175101411552 name: Dot Ap - type: manhattan_accuracy value: 0.8428571428571429 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 15.624195098876953 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.8681318681318683 name: Manhattan F1 - type: manhattan_f1_threshold value: 18.23479461669922 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8061224489795918 name: Manhattan Precision - type: manhattan_recall value: 0.9404761904761905 name: Manhattan Recall - type: manhattan_ap value: 0.9264219833665228 name: Manhattan Ap - type: euclidean_accuracy value: 0.85 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 1.00364351272583 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.8727272727272727 name: Euclidean F1 - type: euclidean_f1_threshold value: 1.0129987001419067 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.8888888888888888 name: Euclidean Precision - type: euclidean_recall value: 0.8571428571428571 name: Euclidean Recall - type: euclidean_ap value: 0.927175101411552 name: Euclidean Ap - type: max_accuracy value: 0.85 name: Max Accuracy - type: max_accuracy_threshold value: 15.624195098876953 name: Max Accuracy Threshold - type: max_f1 value: 0.8727272727272727 name: Max F1 - type: max_f1_threshold value: 18.23479461669922 name: Max F1 Threshold - type: max_precision value: 0.8888888888888888 name: Max Precision - type: max_recall value: 0.9404761904761905 name: Max Recall - type: max_ap value: 0.927175101411552 name: Max Ap --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2") # Run inference sentences = [ 'Do you see your scarf in the watering can?', 'Are these your footprints?', 'Magic user', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `custom-arc-semantics-data` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.85 | | cosine_accuracy_threshold | 0.4963 | | cosine_f1 | 0.8727 | | cosine_f1_threshold | 0.4869 | | cosine_precision | 0.8889 | | cosine_recall | 0.8571 | | cosine_ap | 0.9272 | | dot_accuracy | 0.85 | | dot_accuracy_threshold | 0.4963 | | dot_f1 | 0.8727 | | dot_f1_threshold | 0.4869 | | dot_precision | 0.8889 | | dot_recall | 0.8571 | | dot_ap | 0.9272 | | manhattan_accuracy | 0.8429 | | manhattan_accuracy_threshold | 15.6242 | | manhattan_f1 | 0.8681 | | manhattan_f1_threshold | 18.2348 | | manhattan_precision | 0.8061 | | manhattan_recall | 0.9405 | | manhattan_ap | 0.9264 | | euclidean_accuracy | 0.85 | | euclidean_accuracy_threshold | 1.0036 | | euclidean_f1 | 0.8727 | | euclidean_f1_threshold | 1.013 | | euclidean_precision | 0.8889 | | euclidean_recall | 0.8571 | | euclidean_ap | 0.9272 | | max_accuracy | 0.85 | | max_accuracy_threshold | 15.6242 | | max_f1 | 0.8727 | | max_f1_threshold | 18.2348 | | max_precision | 0.8889 | | max_recall | 0.9405 | | **max_ap** | **0.9272** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 560 training samples * Columns: text1, text2, and label * Approximate statistics based on the first 1000 samples: | | text1 | text2 | label | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:-----------------------------------------------------|:--------------------------------------------------------------------------|:---------------| | When it was dinner | Dinner time | 1 | | Did you cook chicken noodle last night? | Did you make chicken noodle for dinner? | 1 | | Someone who can change item | Someone who uses magic that turns something into something. | 1 | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 140 evaluation samples * Columns: text1, text2, and label * Approximate statistics based on the first 1000 samples: | | text1 | text2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | text1 | text2 | label | |:-----------------------------------------|:-----------------------------------------|:---------------| | Let's check inside | Let's search inside | 1 | | Sohpie, are you okay? | Sophie Are you pressured? | 0 | | This wine glass is related. | This sword looks important. | 0 | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `learning_rate`: 2e-05 - `num_train_epochs`: 13 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 13 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap | |:-----:|:----:|:-------------:|:------:|:--------------------------------:| | None | 0 | - | - | 0.9254 | | 1.0 | 70 | 1.1722 | 1.2175 | 0.9237 | | 2.0 | 140 | 0.7774 | 1.0454 | 0.9291 | | 3.0 | 210 | 0.4122 | 1.0024 | 0.9316 | | 4.0 | 280 | 0.229 | 0.9819 | 0.9285 | | 5.0 | 350 | 0.1509 | 0.9215 | 0.9321 | | 6.0 | 420 | 0.0988 | 0.9119 | 0.9312 | | 7.0 | 490 | 0.0772 | 0.8962 | 0.9303 | | 8.0 | 560 | 0.0564 | 0.8905 | 0.9272 | | 9.0 | 630 | 0.0449 | 0.8878 | 0.9266 | | 10.0 | 700 | 0.037 | 0.8841 | 0.9273 | | 11.0 | 770 | 0.0387 | 0.8881 | 0.9265 | | 12.0 | 840 | 0.0332 | 0.8884 | 0.9274 | | 13.0 | 910 | 0.032 | 0.8890 | 0.9272 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```