LeoChiuu commited on
Commit
10ebaae
1 Parent(s): 639641e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +164 -537
README.md CHANGED
@@ -1,574 +1,201 @@
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
- library_name: sentence-transformers
4
- metrics:
5
- - cosine_accuracy
6
- - cosine_accuracy_threshold
7
- - cosine_f1
8
- - cosine_f1_threshold
9
- - cosine_precision
10
- - cosine_recall
11
- - cosine_ap
12
- - dot_accuracy
13
- - dot_accuracy_threshold
14
- - dot_f1
15
- - dot_f1_threshold
16
- - dot_precision
17
- - dot_recall
18
- - dot_ap
19
- - manhattan_accuracy
20
- - manhattan_accuracy_threshold
21
- - manhattan_f1
22
- - manhattan_f1_threshold
23
- - manhattan_precision
24
- - manhattan_recall
25
- - manhattan_ap
26
- - euclidean_accuracy
27
- - euclidean_accuracy_threshold
28
- - euclidean_f1
29
- - euclidean_f1_threshold
30
- - euclidean_precision
31
- - euclidean_recall
32
- - euclidean_ap
33
- - max_accuracy
34
- - max_accuracy_threshold
35
- - max_f1
36
- - max_f1_threshold
37
- - max_precision
38
- - max_recall
39
- - max_ap
40
- pipeline_tag: sentence-similarity
41
- tags:
42
- - sentence-transformers
43
- - sentence-similarity
44
- - feature-extraction
45
- - generated_from_trainer
46
- - dataset_size:53
47
- - loss:MultipleNegativesRankingLoss
48
- widget:
49
- - source_sentence: 水しぶき の 白い 縞 模様 の ネイビー シャツ を 着た 若い 男 。
50
- sentences:
51
- - 男 が 通り を 掃除 して い ます 。
52
- - 波 に 乗って いる 背 の 高い 人 。
53
- - 水 で 泳ぐ 若い 男 。
54
- - source_sentence: ブロンド の 女の子 が 砂 の 中 の 垂直 の 丸太 を 踏んで い ます 。
55
- sentences:
56
- - 車 は レース 中 です 。
57
- - 何 か を 見て いる 二 人 が い ます 。
58
- - ブロンド の 女の子 が 砂 の 中 の 丸太 を 踏んで い ます 。
59
- - source_sentence: 人々 は ドック に 集まり 、 ビール を 飲み ます 。
60
- sentences:
61
- - 屋外 に 人 が い ます 。
62
- - 人々 は 眼鏡 を かけて い ます
63
- - 自転車 の 挑戦 に 勝とう と する 人々 の グループ 。
64
- model-index:
65
- - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
66
- results:
67
- - task:
68
- type: binary-classification
69
- name: Binary Classification
70
- dataset:
71
- name: custom arc semantics data jp
72
- type: custom-arc-semantics-data-jp
73
- metrics:
74
- - type: cosine_accuracy
75
- value: 0.6363636363636364
76
- name: Cosine Accuracy
77
- - type: cosine_accuracy_threshold
78
- value: 0.9313654899597168
79
- name: Cosine Accuracy Threshold
80
- - type: cosine_f1
81
- value: 0.5454545454545454
82
- name: Cosine F1
83
- - type: cosine_f1_threshold
84
- value: 0.5700559616088867
85
- name: Cosine F1 Threshold
86
- - type: cosine_precision
87
- value: 0.375
88
- name: Cosine Precision
89
- - type: cosine_recall
90
- value: 1.0
91
- name: Cosine Recall
92
- - type: cosine_ap
93
- value: 0.2757936507936508
94
- name: Cosine Ap
95
- - type: dot_accuracy
96
- value: 0.6363636363636364
97
- name: Dot Accuracy
98
- - type: dot_accuracy_threshold
99
- value: 507.0841064453125
100
- name: Dot Accuracy Threshold
101
- - type: dot_f1
102
- value: 0.5454545454545454
103
- name: Dot F1
104
- - type: dot_f1_threshold
105
- value: 312.11273193359375
106
- name: Dot F1 Threshold
107
- - type: dot_precision
108
- value: 0.375
109
- name: Dot Precision
110
- - type: dot_recall
111
- value: 1.0
112
- name: Dot Recall
113
- - type: dot_ap
114
- value: 0.2757936507936508
115
- name: Dot Ap
116
- - type: manhattan_accuracy
117
- value: 0.6363636363636364
118
- name: Manhattan Accuracy
119
- - type: manhattan_accuracy_threshold
120
- value: 160.6302490234375
121
- name: Manhattan Accuracy Threshold
122
- - type: manhattan_f1
123
- value: 0.5454545454545454
124
- name: Manhattan F1
125
- - type: manhattan_f1_threshold
126
- value: 482.15924072265625
127
- name: Manhattan F1 Threshold
128
- - type: manhattan_precision
129
- value: 0.375
130
- name: Manhattan Precision
131
- - type: manhattan_recall
132
- value: 1.0
133
- name: Manhattan Recall
134
- - type: manhattan_ap
135
- value: 0.2757936507936508
136
- name: Manhattan Ap
137
- - type: euclidean_accuracy
138
- value: 0.6363636363636364
139
- name: Euclidean Accuracy
140
- - type: euclidean_accuracy_threshold
141
- value: 7.295640468597412
142
- name: Euclidean Accuracy Threshold
143
- - type: euclidean_f1
144
- value: 0.5454545454545454
145
- name: Euclidean F1
146
- - type: euclidean_f1_threshold
147
- value: 21.727622985839844
148
- name: Euclidean F1 Threshold
149
- - type: euclidean_precision
150
- value: 0.375
151
- name: Euclidean Precision
152
- - type: euclidean_recall
153
- value: 1.0
154
- name: Euclidean Recall
155
- - type: euclidean_ap
156
- value: 0.2757936507936508
157
- name: Euclidean Ap
158
- - type: max_accuracy
159
- value: 0.6363636363636364
160
- name: Max Accuracy
161
- - type: max_accuracy_threshold
162
- value: 507.0841064453125
163
- name: Max Accuracy Threshold
164
- - type: max_f1
165
- value: 0.5454545454545454
166
- name: Max F1
167
- - type: max_f1_threshold
168
- value: 482.15924072265625
169
- name: Max F1 Threshold
170
- - type: max_precision
171
- value: 0.375
172
- name: Max Precision
173
- - type: max_recall
174
- value: 1.0
175
- name: Max Recall
176
- - type: max_ap
177
- value: 0.2757936507936508
178
- name: Max Ap
179
  ---
180
 
181
- # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
182
 
183
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
184
 
185
  ## Model Details
186
 
187
  ### Model Description
188
- - **Model Type:** Sentence Transformer
189
- - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
190
- - **Maximum Sequence Length:** 512 tokens
191
- - **Output Dimensionality:** 768 tokens
192
- - **Similarity Function:** Cosine Similarity
193
- - **Training Dataset:**
194
- - csv
195
- <!-- - **Language:** Unknown -->
196
- <!-- - **License:** Unknown -->
197
 
198
- ### Model Sources
199
 
200
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
201
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
202
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
203
 
204
- ### Full Model Architecture
 
 
 
 
 
 
205
 
206
- ```
207
- SentenceTransformer(
208
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
209
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
210
- )
211
- ```
212
 
213
- ## Usage
214
 
215
- ### Direct Usage (Sentence Transformers)
 
 
216
 
217
- First install the Sentence Transformers library:
218
 
219
- ```bash
220
- pip install -U sentence-transformers
221
- ```
222
 
223
- Then you can load this model and run inference.
224
- ```python
225
- from sentence_transformers import SentenceTransformer
226
 
227
- # Download from the 🤗 Hub
228
- model = SentenceTransformer("sentence_transformers_model_id")
229
- # Run inference
230
- sentences = [
231
- '人々 は ドック に 集まり 、 ビール を 飲み ます 。',
232
- '屋外 に 人 が い ます 。',
233
- '人々 は 眼鏡 を かけて い ます',
234
- ]
235
- embeddings = model.encode(sentences)
236
- print(embeddings.shape)
237
- # [3, 768]
238
 
239
- # Get the similarity scores for the embeddings
240
- similarities = model.similarity(embeddings, embeddings)
241
- print(similarities.shape)
242
- # [3, 3]
243
- ```
244
 
245
- <!--
246
- ### Direct Usage (Transformers)
247
 
248
- <details><summary>Click to see the direct usage in Transformers</summary>
249
 
250
- </details>
251
- -->
252
 
253
- <!--
254
- ### Downstream Usage (Sentence Transformers)
255
 
256
- You can finetune this model on your own dataset.
257
 
258
- <details><summary>Click to expand</summary>
259
 
260
- </details>
261
- -->
262
 
263
- <!--
264
- ### Out-of-Scope Use
265
 
266
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
267
- -->
268
 
269
- ## Evaluation
270
-
271
- ### Metrics
272
-
273
- #### Binary Classification
274
- * Dataset: `custom-arc-semantics-data-jp`
275
- * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
276
-
277
- | Metric | Value |
278
- |:-----------------------------|:-----------|
279
- | cosine_accuracy | 0.6364 |
280
- | cosine_accuracy_threshold | 0.9314 |
281
- | cosine_f1 | 0.5455 |
282
- | cosine_f1_threshold | 0.5701 |
283
- | cosine_precision | 0.375 |
284
- | cosine_recall | 1.0 |
285
- | cosine_ap | 0.2758 |
286
- | dot_accuracy | 0.6364 |
287
- | dot_accuracy_threshold | 507.0841 |
288
- | dot_f1 | 0.5455 |
289
- | dot_f1_threshold | 312.1127 |
290
- | dot_precision | 0.375 |
291
- | dot_recall | 1.0 |
292
- | dot_ap | 0.2758 |
293
- | manhattan_accuracy | 0.6364 |
294
- | manhattan_accuracy_threshold | 160.6302 |
295
- | manhattan_f1 | 0.5455 |
296
- | manhattan_f1_threshold | 482.1592 |
297
- | manhattan_precision | 0.375 |
298
- | manhattan_recall | 1.0 |
299
- | manhattan_ap | 0.2758 |
300
- | euclidean_accuracy | 0.6364 |
301
- | euclidean_accuracy_threshold | 7.2956 |
302
- | euclidean_f1 | 0.5455 |
303
- | euclidean_f1_threshold | 21.7276 |
304
- | euclidean_precision | 0.375 |
305
- | euclidean_recall | 1.0 |
306
- | euclidean_ap | 0.2758 |
307
- | max_accuracy | 0.6364 |
308
- | max_accuracy_threshold | 507.0841 |
309
- | max_f1 | 0.5455 |
310
- | max_f1_threshold | 482.1592 |
311
- | max_precision | 0.375 |
312
- | max_recall | 1.0 |
313
- | **max_ap** | **0.2758** |
314
-
315
- <!--
316
- ## Bias, Risks and Limitations
317
-
318
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
319
- -->
320
-
321
- <!--
322
  ### Recommendations
323
 
324
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
325
- -->
 
 
 
 
 
 
 
326
 
327
  ## Training Details
328
 
329
- ### Training Dataset
330
-
331
- #### csv
332
-
333
- * Dataset: csv
334
- * Size: 53 training samples
335
- * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
336
- * Approximate statistics based on the first 53 samples:
337
- | | text1 | text2 | label |
338
- |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
339
- | type | string | string | int |
340
- | details | <ul><li>min: 14 tokens</li><li>mean: 36.12 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 22.86 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~26.19%</li><li>1: ~73.81%</li></ul> |
341
- * Samples:
342
- | text1 | text2 | label |
343
- |:--------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
344
- | <code>医療 従事 者 は 、 手術 中 に 患者 に 接続 さ れた モニター の セット から 本 を 読んで い ます 。</code> | <code>家族 は モニター の セット から 読み 取り ます 。</code> | <code>1</code> |
345
- | <code>帽子 を かぶった 一 人 の 男 が 別の 男 を 芝生 に ひっくり返し ます 。</code> | <code>二 人 の 男 が 芝生 で パルクール を 練習 して い ます 。</code> | <code>1</code> |
346
- | <code>数 男性 MMA 戦い 参加 して ます 。</code> | <code>男性 バレエ 参加 して ます 。</code> | <code>1</code> |
347
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
348
- ```json
349
- {
350
- "scale": 20.0,
351
- "similarity_fct": "cos_sim"
352
- }
353
- ```
354
-
355
- ### Evaluation Dataset
356
-
357
- #### csv
358
-
359
- * Dataset: csv
360
- * Size: 53 evaluation samples
361
- * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
362
- * Approximate statistics based on the first 53 samples:
363
- | | text1 | text2 | label |
364
- |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
365
- | type | string | string | int |
366
- | details | <ul><li>min: 19 tokens</li><li>mean: 36.73 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 19.45 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>0: ~72.73%</li><li>1: ~27.27%</li></ul> |
367
- * Samples:
368
- | text1 | text2 | label |
369
- |:---------------------------------------------------------------------------------------|:--------------------------------------------------|:---------------|
370
- | <code>青い ズボン と 重い 作業 ブーツ を 着た 男性 が 、 レンガ で 舗装 さ れた 通り から 白い 紙 吹雪 を 掃除 して い ます 。</code> | <code>男 が 通り を 掃除 して い ます 。</code> | <code>0</code> |
371
- | <code>人々 は ドック に 集まり 、 ビール を 飲み ます 。</code> | <code>屋外 に 人 が い ます 。</code> | <code>0</code> |
372
- | <code>ブロンド の 女の子 が 砂 の 中 の 垂直 の 丸太 を 踏んで い ます 。</code> | <code>ブロンド の 女の子 が 砂 の 中 の 丸太 を 踏んで い ます 。</code> | <code>0</code> |
373
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
374
- ```json
375
- {
376
- "scale": 20.0,
377
- "similarity_fct": "cos_sim"
378
- }
379
- ```
380
-
381
- ### Training Hyperparameters
382
- #### Non-Default Hyperparameters
383
-
384
- - `eval_strategy`: epoch
385
- - `learning_rate`: 2e-05
386
- - `num_train_epochs`: 7
387
- - `warmup_ratio`: 0.4
388
- - `fp16`: True
389
- - `batch_sampler`: no_duplicates
390
-
391
- #### All Hyperparameters
392
- <details><summary>Click to expand</summary>
393
-
394
- - `overwrite_output_dir`: False
395
- - `do_predict`: False
396
- - `eval_strategy`: epoch
397
- - `prediction_loss_only`: True
398
- - `per_device_train_batch_size`: 8
399
- - `per_device_eval_batch_size`: 8
400
- - `per_gpu_train_batch_size`: None
401
- - `per_gpu_eval_batch_size`: None
402
- - `gradient_accumulation_steps`: 1
403
- - `eval_accumulation_steps`: None
404
- - `torch_empty_cache_steps`: None
405
- - `learning_rate`: 2e-05
406
- - `weight_decay`: 0.0
407
- - `adam_beta1`: 0.9
408
- - `adam_beta2`: 0.999
409
- - `adam_epsilon`: 1e-08
410
- - `max_grad_norm`: 1.0
411
- - `num_train_epochs`: 7
412
- - `max_steps`: -1
413
- - `lr_scheduler_type`: linear
414
- - `lr_scheduler_kwargs`: {}
415
- - `warmup_ratio`: 0.4
416
- - `warmup_steps`: 0
417
- - `log_level`: passive
418
- - `log_level_replica`: warning
419
- - `log_on_each_node`: True
420
- - `logging_nan_inf_filter`: True
421
- - `save_safetensors`: True
422
- - `save_on_each_node`: False
423
- - `save_only_model`: False
424
- - `restore_callback_states_from_checkpoint`: False
425
- - `no_cuda`: False
426
- - `use_cpu`: False
427
- - `use_mps_device`: False
428
- - `seed`: 42
429
- - `data_seed`: None
430
- - `jit_mode_eval`: False
431
- - `use_ipex`: False
432
- - `bf16`: False
433
- - `fp16`: True
434
- - `fp16_opt_level`: O1
435
- - `half_precision_backend`: auto
436
- - `bf16_full_eval`: False
437
- - `fp16_full_eval`: False
438
- - `tf32`: None
439
- - `local_rank`: 0
440
- - `ddp_backend`: None
441
- - `tpu_num_cores`: None
442
- - `tpu_metrics_debug`: False
443
- - `debug`: []
444
- - `dataloader_drop_last`: False
445
- - `dataloader_num_workers`: 0
446
- - `dataloader_prefetch_factor`: None
447
- - `past_index`: -1
448
- - `disable_tqdm`: False
449
- - `remove_unused_columns`: True
450
- - `label_names`: None
451
- - `load_best_model_at_end`: False
452
- - `ignore_data_skip`: False
453
- - `fsdp`: []
454
- - `fsdp_min_num_params`: 0
455
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
456
- - `fsdp_transformer_layer_cls_to_wrap`: None
457
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
458
- - `deepspeed`: None
459
- - `label_smoothing_factor`: 0.0
460
- - `optim`: adamw_torch
461
- - `optim_args`: None
462
- - `adafactor`: False
463
- - `group_by_length`: False
464
- - `length_column_name`: length
465
- - `ddp_find_unused_parameters`: None
466
- - `ddp_bucket_cap_mb`: None
467
- - `ddp_broadcast_buffers`: False
468
- - `dataloader_pin_memory`: True
469
- - `dataloader_persistent_workers`: False
470
- - `skip_memory_metrics`: True
471
- - `use_legacy_prediction_loop`: False
472
- - `push_to_hub`: False
473
- - `resume_from_checkpoint`: None
474
- - `hub_model_id`: None
475
- - `hub_strategy`: every_save
476
- - `hub_private_repo`: False
477
- - `hub_always_push`: False
478
- - `gradient_checkpointing`: False
479
- - `gradient_checkpointing_kwargs`: None
480
- - `include_inputs_for_metrics`: False
481
- - `eval_do_concat_batches`: True
482
- - `fp16_backend`: auto
483
- - `push_to_hub_model_id`: None
484
- - `push_to_hub_organization`: None
485
- - `mp_parameters`:
486
- - `auto_find_batch_size`: False
487
- - `full_determinism`: False
488
- - `torchdynamo`: None
489
- - `ray_scope`: last
490
- - `ddp_timeout`: 1800
491
- - `torch_compile`: False
492
- - `torch_compile_backend`: None
493
- - `torch_compile_mode`: None
494
- - `dispatch_batches`: None
495
- - `split_batches`: None
496
- - `include_tokens_per_second`: False
497
- - `include_num_input_tokens_seen`: False
498
- - `neftune_noise_alpha`: None
499
- - `optim_target_modules`: None
500
- - `batch_eval_metrics`: False
501
- - `eval_on_start`: False
502
- - `eval_use_gather_object`: False
503
- - `batch_sampler`: no_duplicates
504
- - `multi_dataset_batch_sampler`: proportional
505
-
506
- </details>
507
-
508
- ### Training Logs
509
- | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
510
- |:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
511
- | 1.0 | 6 | 0.9331 | 0.9225 | 0.2889 |
512
- | 2.0 | 12 | 0.6824 | 0.9150 | 0.2758 |
513
- | 3.0 | 18 | 0.3449 | 0.9453 | 0.2758 |
514
- | 4.0 | 24 | 0.0672 | 1.0522 | 0.2758 |
515
- | 5.0 | 30 | 0.0161 | 1.2056 | 0.2758 |
516
- | 6.0 | 36 | 0.0071 | 1.2928 | 0.2758 |
517
- | 7.0 | 42 | 0.0047 | 1.3138 | 0.2758 |
518
-
519
-
520
- ### Framework Versions
521
- - Python: 3.10.14
522
- - Sentence Transformers: 3.1.0
523
- - Transformers: 4.44.2
524
- - PyTorch: 2.4.1+cu121
525
- - Accelerate: 0.34.2
526
- - Datasets: 2.20.0
527
- - Tokenizers: 0.19.1
528
-
529
- ## Citation
530
-
531
- ### BibTeX
532
-
533
- #### Sentence Transformers
534
- ```bibtex
535
- @inproceedings{reimers-2019-sentence-bert,
536
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
537
- author = "Reimers, Nils and Gurevych, Iryna",
538
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
539
- month = "11",
540
- year = "2019",
541
- publisher = "Association for Computational Linguistics",
542
- url = "https://arxiv.org/abs/1908.10084",
543
- }
544
- ```
545
-
546
- #### MultipleNegativesRankingLoss
547
- ```bibtex
548
- @misc{henderson2017efficient,
549
- title={Efficient Natural Language Response Suggestion for Smart Reply},
550
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
551
- year={2017},
552
- eprint={1705.00652},
553
- archivePrefix={arXiv},
554
- primaryClass={cs.CL}
555
- }
556
- ```
557
-
558
- <!--
559
- ## Glossary
560
-
561
- *Clearly define terms in order to be accessible across audiences.*
562
- -->
563
-
564
- <!--
565
- ## Model Card Authors
566
-
567
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
568
- -->
569
-
570
- <!--
571
  ## Model Card Contact
572
 
573
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
574
- -->
 
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
+ language: ja
4
+ license: cc-by-sa-4.0
5
+ model_name: LeoChiuu/sbert-base-ja-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
+ # Model Card for LeoChiuu/sbert-base-ja-arc
9
+
10
+ <!-- Provide a quick summary of what the model is/does. -->
11
+
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
 
17
 
18
+ <!-- Provide a longer summary of what this model is. -->
19
 
20
+ Generates similarity embeddings
 
 
21
 
22
+ - **Developed by:** [More Information Needed]
23
+ - **Funded by [optional]:** [More Information Needed]
24
+ - **Shared by [optional]:** [More Information Needed]
25
+ - **Model type:** [More Information Needed]
26
+ - **Language(s) (NLP):** ja
27
+ - **License:** cc-by-sa-4.0
28
+ - **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
29
 
30
+ ### Model Sources [optional]
 
 
 
 
 
31
 
32
+ <!-- Provide the basic links for the model. -->
33
 
34
+ - **Repository:** [More Information Needed]
35
+ - **Paper [optional]:** [More Information Needed]
36
+ - **Demo [optional]:** [More Information Needed]
37
 
38
+ ## Uses
39
 
40
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
41
 
42
+ ### Direct Use
 
 
43
 
44
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
 
 
45
 
46
+ [More Information Needed]
 
 
 
 
47
 
48
+ ### Downstream Use [optional]
 
49
 
50
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
+ [More Information Needed]
 
53
 
54
+ ### Out-of-Scope Use
 
55
 
56
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
 
58
+ [More Information Needed]
59
 
60
+ ## Bias, Risks, and Limitations
 
61
 
62
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
63
 
64
+ [More Information Needed]
 
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ### Recommendations
67
 
68
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
+
70
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
+
72
+ ## How to Get Started with the Model
73
+
74
+ Use the code below to get started with the model.
75
+
76
+ [More Information Needed]
77
 
78
  ## Training Details
79
 
80
+ ### Training Data
81
+
82
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
+
84
+ [More Information Needed]
85
+
86
+ ### Training Procedure
87
+
88
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
+
90
+ #### Preprocessing [optional]
91
+
92
+ [More Information Needed]
93
+
94
+
95
+ #### Training Hyperparameters
96
+
97
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
+
99
+ #### Speeds, Sizes, Times [optional]
100
+
101
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
+
103
+ [More Information Needed]
104
+
105
+ ## Evaluation
106
+
107
+ <!-- This section describes the evaluation protocols and provides the results. -->
108
+
109
+ ### Testing Data, Factors & Metrics
110
+
111
+ #### Testing Data
112
+
113
+ <!-- This should link to a Dataset Card if possible. -->
114
+
115
+ [More Information Needed]
116
+
117
+ #### Factors
118
+
119
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
+
121
+ [More Information Needed]
122
+
123
+ #### Metrics
124
+
125
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
+
127
+ [More Information Needed]
128
+
129
+ ### Results
130
+
131
+ [More Information Needed]
132
+
133
+ #### Summary
134
+
135
+
136
+
137
+ ## Model Examination [optional]
138
+
139
+ <!-- Relevant interpretability work for the model goes here -->
140
+
141
+ [More Information Needed]
142
+
143
+ ## Environmental Impact
144
+
145
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
+
147
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
+
149
+ - **Hardware Type:** [More Information Needed]
150
+ - **Hours used:** [More Information Needed]
151
+ - **Cloud Provider:** [More Information Needed]
152
+ - **Compute Region:** [More Information Needed]
153
+ - **Carbon Emitted:** [More Information Needed]
154
+
155
+ ## Technical Specifications [optional]
156
+
157
+ ### Model Architecture and Objective
158
+
159
+ [More Information Needed]
160
+
161
+ ### Compute Infrastructure
162
+
163
+ [More Information Needed]
164
+
165
+ #### Hardware
166
+
167
+ [More Information Needed]
168
+
169
+ #### Software
170
+
171
+ [More Information Needed]
172
+
173
+ ## Citation [optional]
174
+
175
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
+
177
+ **BibTeX:**
178
+
179
+ [More Information Needed]
180
+
181
+ **APA:**
182
+
183
+ [More Information Needed]
184
+
185
+ ## Glossary [optional]
186
+
187
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
+
189
+ [More Information Needed]
190
+
191
+ ## More Information [optional]
192
+
193
+ [More Information Needed]
194
+
195
+ ## Model Card Authors [optional]
196
+
197
+ [More Information Needed]
198
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
+ [More Information Needed]