Add new SentenceTransformer model.
Browse files
README.md
CHANGED
@@ -46,31 +46,31 @@ tags:
|
|
46 |
- dataset_size:680
|
47 |
- loss:ContrastiveLoss
|
48 |
widget:
|
49 |
-
- source_sentence:
|
50 |
sentences:
|
51 |
-
-
|
52 |
-
-
|
53 |
-
-
|
54 |
-
- source_sentence:
|
55 |
sentences:
|
56 |
-
-
|
57 |
-
-
|
58 |
-
-
|
59 |
-
- source_sentence:
|
60 |
sentences:
|
61 |
-
-
|
62 |
-
-
|
63 |
-
-
|
64 |
-
- source_sentence:
|
65 |
sentences:
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
69 |
-
- source_sentence:
|
70 |
sentences:
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
74 |
model-index:
|
75 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
76 |
results:
|
@@ -82,109 +82,109 @@ model-index:
|
|
82 |
type: custom-arc-semantics-data-jp
|
83 |
metrics:
|
84 |
- type: cosine_accuracy
|
85 |
-
value: 0.
|
86 |
name: Cosine Accuracy
|
87 |
- type: cosine_accuracy_threshold
|
88 |
-
value: 0.
|
89 |
name: Cosine Accuracy Threshold
|
90 |
- type: cosine_f1
|
91 |
-
value: 0.
|
92 |
name: Cosine F1
|
93 |
- type: cosine_f1_threshold
|
94 |
-
value: 0.
|
95 |
name: Cosine F1 Threshold
|
96 |
- type: cosine_precision
|
97 |
-
value: 0.
|
98 |
name: Cosine Precision
|
99 |
- type: cosine_recall
|
100 |
-
value: 0.
|
101 |
name: Cosine Recall
|
102 |
- type: cosine_ap
|
103 |
-
value: 0.
|
104 |
name: Cosine Ap
|
105 |
- type: dot_accuracy
|
106 |
-
value: 0.
|
107 |
name: Dot Accuracy
|
108 |
- type: dot_accuracy_threshold
|
109 |
-
value:
|
110 |
name: Dot Accuracy Threshold
|
111 |
- type: dot_f1
|
112 |
-
value: 0.
|
113 |
name: Dot F1
|
114 |
- type: dot_f1_threshold
|
115 |
-
value:
|
116 |
name: Dot F1 Threshold
|
117 |
- type: dot_precision
|
118 |
-
value: 0.
|
119 |
name: Dot Precision
|
120 |
- type: dot_recall
|
121 |
-
value: 0.
|
122 |
name: Dot Recall
|
123 |
- type: dot_ap
|
124 |
-
value: 0.
|
125 |
name: Dot Ap
|
126 |
- type: manhattan_accuracy
|
127 |
-
value: 0.
|
128 |
name: Manhattan Accuracy
|
129 |
- type: manhattan_accuracy_threshold
|
130 |
-
value:
|
131 |
name: Manhattan Accuracy Threshold
|
132 |
- type: manhattan_f1
|
133 |
-
value: 0.
|
134 |
name: Manhattan F1
|
135 |
- type: manhattan_f1_threshold
|
136 |
-
value:
|
137 |
name: Manhattan F1 Threshold
|
138 |
- type: manhattan_precision
|
139 |
-
value: 0.
|
140 |
name: Manhattan Precision
|
141 |
- type: manhattan_recall
|
142 |
-
value: 0.
|
143 |
name: Manhattan Recall
|
144 |
- type: manhattan_ap
|
145 |
-
value: 0.
|
146 |
name: Manhattan Ap
|
147 |
- type: euclidean_accuracy
|
148 |
-
value: 0.
|
149 |
name: Euclidean Accuracy
|
150 |
- type: euclidean_accuracy_threshold
|
151 |
-
value:
|
152 |
name: Euclidean Accuracy Threshold
|
153 |
- type: euclidean_f1
|
154 |
-
value: 0.
|
155 |
name: Euclidean F1
|
156 |
- type: euclidean_f1_threshold
|
157 |
-
value:
|
158 |
name: Euclidean F1 Threshold
|
159 |
- type: euclidean_precision
|
160 |
-
value: 0.
|
161 |
name: Euclidean Precision
|
162 |
- type: euclidean_recall
|
163 |
-
value: 0.
|
164 |
name: Euclidean Recall
|
165 |
- type: euclidean_ap
|
166 |
-
value: 0.
|
167 |
name: Euclidean Ap
|
168 |
- type: max_accuracy
|
169 |
-
value: 0.
|
170 |
name: Max Accuracy
|
171 |
- type: max_accuracy_threshold
|
172 |
-
value:
|
173 |
name: Max Accuracy Threshold
|
174 |
- type: max_f1
|
175 |
-
value: 0.
|
176 |
name: Max F1
|
177 |
- type: max_f1_threshold
|
178 |
-
value:
|
179 |
name: Max F1 Threshold
|
180 |
- type: max_precision
|
181 |
-
value: 0.
|
182 |
name: Max Precision
|
183 |
- type: max_recall
|
184 |
-
value: 0.
|
185 |
name: Max Recall
|
186 |
- type: max_ap
|
187 |
-
value: 0.
|
188 |
name: Max Ap
|
189 |
---
|
190 |
|
@@ -238,9 +238,9 @@ from sentence_transformers import SentenceTransformer
|
|
238 |
model = SentenceTransformer("sentence_transformers_model_id")
|
239 |
# Run inference
|
240 |
sentences = [
|
241 |
-
'
|
242 |
-
'
|
243 |
-
'
|
244 |
]
|
245 |
embeddings = model.encode(sentences)
|
246 |
print(embeddings.shape)
|
@@ -286,41 +286,41 @@ You can finetune this model on your own dataset.
|
|
286 |
|
287 |
| Metric | Value |
|
288 |
|:-----------------------------|:-----------|
|
289 |
-
| cosine_accuracy | 0.
|
290 |
-
| cosine_accuracy_threshold | 0.
|
291 |
-
| cosine_f1 | 0.
|
292 |
-
| cosine_f1_threshold | 0.
|
293 |
-
| cosine_precision | 0.
|
294 |
-
| cosine_recall | 0.
|
295 |
-
| cosine_ap | 0.
|
296 |
-
| dot_accuracy | 0.
|
297 |
-
| dot_accuracy_threshold |
|
298 |
-
| dot_f1 | 0.
|
299 |
-
| dot_f1_threshold |
|
300 |
-
| dot_precision | 0.
|
301 |
-
| dot_recall | 0.
|
302 |
-
| dot_ap | 0.
|
303 |
-
| manhattan_accuracy | 0.
|
304 |
-
| manhattan_accuracy_threshold |
|
305 |
-
| manhattan_f1 | 0.
|
306 |
-
| manhattan_f1_threshold |
|
307 |
-
| manhattan_precision | 0.
|
308 |
-
| manhattan_recall | 0.
|
309 |
-
| manhattan_ap | 0.
|
310 |
-
| euclidean_accuracy | 0.
|
311 |
-
| euclidean_accuracy_threshold |
|
312 |
-
| euclidean_f1 | 0.
|
313 |
-
| euclidean_f1_threshold |
|
314 |
-
| euclidean_precision | 0.
|
315 |
-
| euclidean_recall | 0.
|
316 |
-
| euclidean_ap | 0.
|
317 |
-
| max_accuracy | 0.
|
318 |
-
| max_accuracy_threshold |
|
319 |
-
| max_f1 | 0.
|
320 |
-
| max_f1_threshold |
|
321 |
-
| max_precision | 0.
|
322 |
-
| max_recall | 0.
|
323 |
-
| **max_ap** | **0.
|
324 |
|
325 |
<!--
|
326 |
## Bias, Risks and Limitations
|
@@ -347,13 +347,13 @@ You can finetune this model on your own dataset.
|
|
347 |
| | text1 | text2 | label |
|
348 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
349 |
| type | string | string | int |
|
350 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 8.
|
351 |
* Samples:
|
352 |
-
| text1 | text2
|
353 |
-
|
354 |
-
| <code
|
355 |
-
| <code
|
356 |
-
| <code
|
357 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
358 |
```json
|
359 |
{
|
@@ -371,16 +371,16 @@ You can finetune this model on your own dataset.
|
|
371 |
* Size: 680 evaluation samples
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
* Approximate statistics based on the first 680 samples:
|
374 |
-
| | text1
|
375 |
-
|
376 |
-
| type | string
|
377 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 8.
|
378 |
* Samples:
|
379 |
-
| text1
|
380 |
-
|
381 |
-
| <code
|
382 |
-
| <code
|
383 |
-
| <code
|
384 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
385 |
```json
|
386 |
{
|
@@ -520,12 +520,12 @@ You can finetune this model on your own dataset.
|
|
520 |
### Training Logs
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
|
522 |
|:------:|:----:|:-------------:|:------:|:-----------------------------------:|
|
523 |
-
| None | 0 | - | - | 0.
|
524 |
-
| 1.0147 | 69 | 0.
|
525 |
-
| 2.0147 | 138 | 0.
|
526 |
-
| 3.0147 | 207 | 0.
|
527 |
-
| 4.0147 | 276 | 0.
|
528 |
-
| 4.9412 | 340 | 0.
|
529 |
|
530 |
|
531 |
### Framework Versions
|
|
|
46 |
- dataset_size:680
|
47 |
- loss:ContrastiveLoss
|
48 |
widget:
|
49 |
+
- source_sentence: 木材の山の中にスカーフはある?
|
50 |
sentences:
|
51 |
+
- 巻き割をした?
|
52 |
+
- どっちが欲しい?
|
53 |
+
- おすすめは?
|
54 |
+
- source_sentence: ' 君は猫なの?'
|
55 |
sentences:
|
56 |
+
- どこ探すんだっけ?
|
57 |
+
- 足元よりも更に深くってなに?
|
58 |
+
- キミって猫?
|
59 |
+
- source_sentence: 欲しくない
|
60 |
sentences:
|
61 |
+
- 物体を変化できる人
|
62 |
+
- どっちも欲しくない
|
63 |
+
- スカーフがキャンプファイヤーで燃えてる
|
64 |
+
- source_sentence: 外を見てみよう
|
65 |
sentences:
|
66 |
+
- 誰かが魔法の呪文で花をぬいぐるみに変えた
|
67 |
+
- キミって猫?
|
68 |
+
- 長老
|
69 |
+
- source_sentence: 他には選べないの?
|
70 |
sentences:
|
71 |
+
- お鍋から匂いがしたから
|
72 |
+
- どっちがおすすめ?
|
73 |
+
- なにするんだっけ?
|
74 |
model-index:
|
75 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
76 |
results:
|
|
|
82 |
type: custom-arc-semantics-data-jp
|
83 |
metrics:
|
84 |
- type: cosine_accuracy
|
85 |
+
value: 0.8235294117647058
|
86 |
name: Cosine Accuracy
|
87 |
- type: cosine_accuracy_threshold
|
88 |
+
value: 0.6800776720046997
|
89 |
name: Cosine Accuracy Threshold
|
90 |
- type: cosine_f1
|
91 |
+
value: 0.8571428571428572
|
92 |
name: Cosine F1
|
93 |
- type: cosine_f1_threshold
|
94 |
+
value: 0.6610503196716309
|
95 |
name: Cosine F1 Threshold
|
96 |
- type: cosine_precision
|
97 |
+
value: 0.7912087912087912
|
98 |
name: Cosine Precision
|
99 |
- type: cosine_recall
|
100 |
+
value: 0.935064935064935
|
101 |
name: Cosine Recall
|
102 |
- type: cosine_ap
|
103 |
+
value: 0.8465974769503343
|
104 |
name: Cosine Ap
|
105 |
- type: dot_accuracy
|
106 |
+
value: 0.8161764705882353
|
107 |
name: Dot Accuracy
|
108 |
- type: dot_accuracy_threshold
|
109 |
+
value: 441.6131591796875
|
110 |
name: Dot Accuracy Threshold
|
111 |
- type: dot_f1
|
112 |
+
value: 0.8520710059171598
|
113 |
name: Dot F1
|
114 |
- type: dot_f1_threshold
|
115 |
+
value: 379.92266845703125
|
116 |
name: Dot F1 Threshold
|
117 |
- type: dot_precision
|
118 |
+
value: 0.782608695652174
|
119 |
name: Dot Precision
|
120 |
- type: dot_recall
|
121 |
+
value: 0.935064935064935
|
122 |
name: Dot Recall
|
123 |
- type: dot_ap
|
124 |
+
value: 0.8509292792079832
|
125 |
name: Dot Ap
|
126 |
- type: manhattan_accuracy
|
127 |
+
value: 0.8308823529411765
|
128 |
name: Manhattan Accuracy
|
129 |
- type: manhattan_accuracy_threshold
|
130 |
+
value: 420.1961975097656
|
131 |
name: Manhattan Accuracy Threshold
|
132 |
- type: manhattan_f1
|
133 |
+
value: 0.8622754491017963
|
134 |
name: Manhattan F1
|
135 |
- type: manhattan_f1_threshold
|
136 |
+
value: 430.6374206542969
|
137 |
name: Manhattan F1 Threshold
|
138 |
- type: manhattan_precision
|
139 |
+
value: 0.8
|
140 |
name: Manhattan Precision
|
141 |
- type: manhattan_recall
|
142 |
+
value: 0.935064935064935
|
143 |
name: Manhattan Recall
|
144 |
- type: manhattan_ap
|
145 |
+
value: 0.848438229073751
|
146 |
name: Manhattan Ap
|
147 |
- type: euclidean_accuracy
|
148 |
+
value: 0.8308823529411765
|
149 |
name: Euclidean Accuracy
|
150 |
- type: euclidean_accuracy_threshold
|
151 |
+
value: 18.93894386291504
|
152 |
name: Euclidean Accuracy Threshold
|
153 |
- type: euclidean_f1
|
154 |
+
value: 0.8588957055214723
|
155 |
name: Euclidean F1
|
156 |
- type: euclidean_f1_threshold
|
157 |
+
value: 18.93894386291504
|
158 |
name: Euclidean F1 Threshold
|
159 |
- type: euclidean_precision
|
160 |
+
value: 0.813953488372093
|
161 |
name: Euclidean Precision
|
162 |
- type: euclidean_recall
|
163 |
+
value: 0.9090909090909091
|
164 |
name: Euclidean Recall
|
165 |
- type: euclidean_ap
|
166 |
+
value: 0.8470258990606743
|
167 |
name: Euclidean Ap
|
168 |
- type: max_accuracy
|
169 |
+
value: 0.8308823529411765
|
170 |
name: Max Accuracy
|
171 |
- type: max_accuracy_threshold
|
172 |
+
value: 441.6131591796875
|
173 |
name: Max Accuracy Threshold
|
174 |
- type: max_f1
|
175 |
+
value: 0.8622754491017963
|
176 |
name: Max F1
|
177 |
- type: max_f1_threshold
|
178 |
+
value: 430.6374206542969
|
179 |
name: Max F1 Threshold
|
180 |
- type: max_precision
|
181 |
+
value: 0.813953488372093
|
182 |
name: Max Precision
|
183 |
- type: max_recall
|
184 |
+
value: 0.935064935064935
|
185 |
name: Max Recall
|
186 |
- type: max_ap
|
187 |
+
value: 0.8509292792079832
|
188 |
name: Max Ap
|
189 |
---
|
190 |
|
|
|
238 |
model = SentenceTransformer("sentence_transformers_model_id")
|
239 |
# Run inference
|
240 |
sentences = [
|
241 |
+
'他には選べないの?',
|
242 |
+
'どっちがおすすめ?',
|
243 |
+
'お鍋から匂いがしたから',
|
244 |
]
|
245 |
embeddings = model.encode(sentences)
|
246 |
print(embeddings.shape)
|
|
|
286 |
|
287 |
| Metric | Value |
|
288 |
|:-----------------------------|:-----------|
|
289 |
+
| cosine_accuracy | 0.8235 |
|
290 |
+
| cosine_accuracy_threshold | 0.6801 |
|
291 |
+
| cosine_f1 | 0.8571 |
|
292 |
+
| cosine_f1_threshold | 0.6611 |
|
293 |
+
| cosine_precision | 0.7912 |
|
294 |
+
| cosine_recall | 0.9351 |
|
295 |
+
| cosine_ap | 0.8466 |
|
296 |
+
| dot_accuracy | 0.8162 |
|
297 |
+
| dot_accuracy_threshold | 441.6132 |
|
298 |
+
| dot_f1 | 0.8521 |
|
299 |
+
| dot_f1_threshold | 379.9227 |
|
300 |
+
| dot_precision | 0.7826 |
|
301 |
+
| dot_recall | 0.9351 |
|
302 |
+
| dot_ap | 0.8509 |
|
303 |
+
| manhattan_accuracy | 0.8309 |
|
304 |
+
| manhattan_accuracy_threshold | 420.1962 |
|
305 |
+
| manhattan_f1 | 0.8623 |
|
306 |
+
| manhattan_f1_threshold | 430.6374 |
|
307 |
+
| manhattan_precision | 0.8 |
|
308 |
+
| manhattan_recall | 0.9351 |
|
309 |
+
| manhattan_ap | 0.8484 |
|
310 |
+
| euclidean_accuracy | 0.8309 |
|
311 |
+
| euclidean_accuracy_threshold | 18.9389 |
|
312 |
+
| euclidean_f1 | 0.8589 |
|
313 |
+
| euclidean_f1_threshold | 18.9389 |
|
314 |
+
| euclidean_precision | 0.814 |
|
315 |
+
| euclidean_recall | 0.9091 |
|
316 |
+
| euclidean_ap | 0.847 |
|
317 |
+
| max_accuracy | 0.8309 |
|
318 |
+
| max_accuracy_threshold | 441.6132 |
|
319 |
+
| max_f1 | 0.8623 |
|
320 |
+
| max_f1_threshold | 430.6374 |
|
321 |
+
| max_precision | 0.814 |
|
322 |
+
| max_recall | 0.9351 |
|
323 |
+
| **max_ap** | **0.8509** |
|
324 |
|
325 |
<!--
|
326 |
## Bias, Risks and Limitations
|
|
|
347 |
| | text1 | text2 | label |
|
348 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
349 |
| type | string | string | int |
|
350 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.31 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.03 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>0: ~40.81%</li><li>1: ~59.19%</li></ul> |
|
351 |
* Samples:
|
352 |
+
| text1 | text2 | label |
|
353 |
+
|:-------------------------|:-------------------------------|:---------------|
|
354 |
+
| <code>姿かたちを変える魔法</code> | <code>物の姿を変えられる魔法</code> | <code>1</code> |
|
355 |
+
| <code>青いオーブを見かけた?</code> | <code>青いオーブがどこにあるか知ってる?</code> | <code>1</code> |
|
356 |
+
| <code>猫のぬいぐるみを見たよ</code> | <code>猫のぬいぐるみを失くさなかった?</code> | <code>1</code> |
|
357 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
358 |
```json
|
359 |
{
|
|
|
371 |
* Size: 680 evaluation samples
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
* Approximate statistics based on the first 680 samples:
|
374 |
+
| | text1 | text2 | label |
|
375 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
376 |
+
| type | string | string | int |
|
377 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.24 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.88 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>0: ~43.38%</li><li>1: ~56.62%</li></ul> |
|
378 |
* Samples:
|
379 |
+
| text1 | text2 | label |
|
380 |
+
|:------------------------|:-------------------------|:---------------|
|
381 |
+
| <code>調子はどう?</code> | <code>最近どう?</code> | <code>1</code> |
|
382 |
+
| <code>なにも要らない</code> | <code>家の中</code> | <code>0</code> |
|
383 |
+
| <code>昨日は何を作ったの?</code> | <code>ビーフシチュー食べた?</code> | <code>0</code> |
|
384 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
385 |
```json
|
386 |
{
|
|
|
520 |
### Training Logs
|
521 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
|
522 |
|:------:|:----:|:-------------:|:------:|:-----------------------------------:|
|
523 |
+
| None | 0 | - | - | 0.7957 |
|
524 |
+
| 1.0147 | 69 | 0.0205 | 0.0199 | 0.8294 |
|
525 |
+
| 2.0147 | 138 | 0.0148 | 0.0180 | 0.8410 |
|
526 |
+
| 3.0147 | 207 | 0.0118 | 0.0173 | 0.8455 |
|
527 |
+
| 4.0147 | 276 | 0.0104 | 0.0170 | 0.8489 |
|
528 |
+
| 4.9412 | 340 | 0.0098 | 0.0168 | 0.8509 |
|
529 |
|
530 |
|
531 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 442491744
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df532cbf8c515730b079cb46df0f8397bd0412de5a0619608c49d03caf8e7902
|
3 |
size 442491744
|
runs/Sep12_19-08-06_default/events.out.tfevents.1726168095.default.1847.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32eddd6cc79cf3f51591dc64c1ddf3bba17c026db5c91ff0bfdf16cb3f7d029c
|
3 |
+
size 22423
|