Add new SentenceTransformer model.
Browse files
README.md
CHANGED
@@ -1,201 +1,387 @@
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
-
|
12 |
|
|
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
Generates similarity embeddings
|
21 |
-
|
22 |
-
- **Developed by:** [More Information Needed]
|
23 |
-
- **Funded by [optional]:** [More Information Needed]
|
24 |
-
- **Shared by [optional]:** [More Information Needed]
|
25 |
-
- **Model type:** [More Information Needed]
|
26 |
-
- **Language(s) (NLP):** ja
|
27 |
-
- **License:** cc-by-sa-4.0
|
28 |
-
- **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
|
29 |
-
|
30 |
-
### Model Sources [optional]
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
- **Paper [optional]:** [More Information Needed]
|
36 |
-
- **Demo [optional]:** [More Information Needed]
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
### Direct
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Out-of-Scope Use
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
69 |
-
|
70 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
71 |
-
|
72 |
-
## How to Get Started with the Model
|
73 |
-
|
74 |
-
Use the code below to get started with the model.
|
75 |
-
|
76 |
-
[More Information Needed]
|
77 |
-
|
78 |
-
## Training Details
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
89 |
-
|
90 |
-
#### Preprocessing [optional]
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
|
95 |
-
#### Training Hyperparameters
|
96 |
-
|
97 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
98 |
-
|
99 |
-
#### Speeds, Sizes, Times [optional]
|
100 |
-
|
101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
|
103 |
-
|
|
|
104 |
|
105 |
## Evaluation
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
### Testing Data, Factors & Metrics
|
110 |
-
|
111 |
-
#### Testing Data
|
112 |
-
|
113 |
-
<!-- This should link to a Dataset Card if possible. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
|
123 |
-
####
|
|
|
|
|
124 |
|
125 |
-
|
|
|
|
|
126 |
|
127 |
-
|
|
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
## Model Card Contact
|
200 |
|
201 |
-
|
|
|
|
1 |
---
|
2 |
base_model: colorfulscoop/sbert-base-ja
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:5330
|
13 |
+
- loss:SoftmaxLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: 顔 に マスク を かぶった 男性 は 、 測定 中 に 残した すべて の 作業 を 一 時 停止 して い ます 。
|
16 |
+
sentences:
|
17 |
+
- 誰 か が マスク を して いる 。
|
18 |
+
- 緑 の 服 を 着た 女性 が 、 別の 男性 の 顔 に 何 か を 書き ます 。
|
19 |
+
- 男性 が 女性 に キス して い ます 。
|
20 |
+
- source_sentence: 女の子 は 、 バレーボール を スパイク に ジャンプ し ます 。
|
21 |
+
sentences:
|
22 |
+
- ベンチ で 昼寝 を して いる 男
|
23 |
+
- プロパガンダ は 反戦 です 。
|
24 |
+
- 女の子 が ジャンプ し ます 。
|
25 |
+
- source_sentence: ステージ で ドラム を 演奏 する 男 。
|
26 |
+
sentences:
|
27 |
+
- 男 が ステージ で リズム を 作り ます 。
|
28 |
+
- 女性 は 頭 を 覆って いる
|
29 |
+
- 2 人 の 女性 が リビング ルーム に 座って レシピ を 議論 して い ます 。
|
30 |
+
- source_sentence: 青い シャツ を 着て フィールド を 耕す 東洋 の 帽子 を 持つ 男 。
|
31 |
+
sentences:
|
32 |
+
- 男 が 水 を サーフィン して いる
|
33 |
+
- 子犬 と ビーチ を 訪れた 人々
|
34 |
+
- バイク に 乗る 男
|
35 |
+
- source_sentence: 水着 姿 の 少女 に バケツ の 水 を 注ぐ ウォーター パーク の 少年 。
|
36 |
+
sentences:
|
37 |
+
- 騎士 たち は 、 溶けた 鉛 の バケツ を 城壁 の 下 の 不幸な 農奴 に 注ぎ ます 。
|
38 |
+
- 誰 も 歩いて い ない
|
39 |
+
- 僧 ks は にぎやかな 通り を 渡り ます 。
|
40 |
+
model-index:
|
41 |
+
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
42 |
+
results:
|
43 |
+
- task:
|
44 |
+
type: label-accuracy
|
45 |
+
name: Label Accuracy
|
46 |
+
dataset:
|
47 |
+
name: val
|
48 |
+
type: val
|
49 |
+
metrics:
|
50 |
+
- type: accuracy
|
51 |
+
value: 0.7782363977485929
|
52 |
+
name: Accuracy
|
53 |
---
|
54 |
|
55 |
+
# SentenceTransformer based on colorfulscoop/sbert-base-ja
|
|
|
|
|
|
|
56 |
|
57 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
58 |
|
59 |
## Model Details
|
60 |
|
61 |
### Model Description
|
62 |
+
- **Model Type:** Sentence Transformer
|
63 |
+
- **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
|
64 |
+
- **Maximum Sequence Length:** 512 tokens
|
65 |
+
- **Output Dimensionality:** 768 tokens
|
66 |
+
- **Similarity Function:** Cosine Similarity
|
67 |
+
- **Training Dataset:**
|
68 |
+
- csv
|
69 |
+
<!-- - **Language:** Unknown -->
|
70 |
+
<!-- - **License:** Unknown -->
|
71 |
|
72 |
+
### Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
75 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
76 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
77 |
|
78 |
+
### Full Model Architecture
|
|
|
|
|
79 |
|
80 |
+
```
|
81 |
+
SentenceTransformer(
|
82 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
83 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
84 |
+
)
|
85 |
+
```
|
86 |
|
87 |
+
## Usage
|
88 |
|
89 |
+
### Direct Usage (Sentence Transformers)
|
90 |
|
91 |
+
First install the Sentence Transformers library:
|
92 |
|
93 |
+
```bash
|
94 |
+
pip install -U sentence-transformers
|
95 |
+
```
|
96 |
|
97 |
+
Then you can load this model and run inference.
|
98 |
+
```python
|
99 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Download from the 🤗 Hub
|
102 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
103 |
+
# Run inference
|
104 |
+
sentences = [
|
105 |
+
'水着 姿 の 少女 に バケツ の 水 を 注ぐ ウォーター パーク の 少年 。',
|
106 |
+
'騎士 たち は 、 溶けた 鉛 の バケツ を 城壁 の 下 の 不幸な 農奴 に 注ぎ ます 。',
|
107 |
+
'僧 ks は にぎやかな 通り を 渡り ます 。',
|
108 |
+
]
|
109 |
+
embeddings = model.encode(sentences)
|
110 |
+
print(embeddings.shape)
|
111 |
+
# [3, 768]
|
112 |
|
113 |
+
# Get the similarity scores for the embeddings
|
114 |
+
similarities = model.similarity(embeddings, embeddings)
|
115 |
+
print(similarities.shape)
|
116 |
+
# [3, 3]
|
117 |
+
```
|
118 |
|
119 |
+
<!--
|
120 |
+
### Direct Usage (Transformers)
|
121 |
|
122 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
123 |
|
124 |
+
</details>
|
125 |
+
-->
|
126 |
|
127 |
+
<!--
|
128 |
+
### Downstream Usage (Sentence Transformers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
You can finetune this model on your own dataset.
|
131 |
|
132 |
+
<details><summary>Click to expand</summary>
|
133 |
|
134 |
+
</details>
|
135 |
+
-->
|
136 |
|
137 |
+
<!--
|
138 |
+
### Out-of-Scope Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
141 |
+
-->
|
142 |
|
143 |
## Evaluation
|
144 |
|
145 |
+
### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
#### Label Accuracy
|
148 |
+
* Dataset: `val`
|
149 |
+
* Evaluated with [<code>LabelAccuracyEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.LabelAccuracyEvaluator)
|
150 |
|
151 |
+
| Metric | Value |
|
152 |
+
|:-------------|:-----------|
|
153 |
+
| **accuracy** | **0.7782** |
|
154 |
|
155 |
+
<!--
|
156 |
+
## Bias, Risks and Limitations
|
157 |
|
158 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
159 |
+
-->
|
160 |
|
161 |
+
<!--
|
162 |
+
### Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
165 |
+
-->
|
166 |
|
167 |
+
## Training Details
|
168 |
|
169 |
+
### Training Dataset
|
170 |
+
|
171 |
+
#### csv
|
172 |
+
|
173 |
+
* Dataset: csv
|
174 |
+
* Size: 5,330 training samples
|
175 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
176 |
+
* Approximate statistics based on the first 1000 samples:
|
177 |
+
| | sentence_0 | sentence_1 | label |
|
178 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
179 |
+
| type | string | string | int |
|
180 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 35.79 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.66 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>0: ~32.80%</li><li>1: ~67.20%</li></ul> |
|
181 |
+
* Samples:
|
182 |
+
| sentence_0 | sentence_1 | label |
|
183 |
+
|:----------------------------------------------------------------------|:------------------------------------------|:---------------|
|
184 |
+
| <code>薬剤 師 が 処方 を 準備 して い ます 。</code> | <code>薬剤 師 が 自宅 の ソファ に 座って い ます 。</code> | <code>1</code> |
|
185 |
+
| <code>3 人 の 男性 が 小屋 を 背景 に 象 に 乗って おり 、 2 人 が 帽子 を かぶって い ます 。</code> | <code>一 人 の 男 は 帽子 を かぶって い ませ ん 。</code> | <code>0</code> |
|
186 |
+
| <code>茶色 の 犬 と の クロスカントリー スキー の 女性 。</code> | <code>草 は 緑 でした</code> | <code>1</code> |
|
187 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
188 |
+
|
189 |
+
### Evaluation Dataset
|
190 |
+
|
191 |
+
#### csv
|
192 |
+
|
193 |
+
* Dataset: csv
|
194 |
+
* Size: 5,330 evaluation samples
|
195 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
196 |
+
* Approximate statistics based on the first 1000 samples:
|
197 |
+
| | text1 | text2 | label |
|
198 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
199 |
+
| type | string | string | int |
|
200 |
+
| details | <ul><li>min: 12 tokens</li><li>mean: 36.61 tokens</li><li>max: 108 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 22.81 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>0: ~32.90%</li><li>1: ~67.10%</li></ul> |
|
201 |
+
* Samples:
|
202 |
+
| text1 | text2 | label |
|
203 |
+
|:----------------------------------------------------------------------------|:---------------------------------------------------------|:---------------|
|
204 |
+
| <code>青い ジャージ の 裏 に 10 番 の ソフトボール プレーヤー が ホーム プレート に 向かって 走って い ます 。</code> | <code>ソフトボール 選手 は 10 番 です</code> | <code>0</code> |
|
205 |
+
| <code>山 の 湖 の そば の 岩 だらけ の 道 で 自転車 に 乗る 男 。</code> | <code>自転車 の 男</code> | <code>0</code> |
|
206 |
+
| <code>テント の 前 の 芝生 の 椅子 に 座って いる 赤い ひげ を 生やした ひげ を 生やした 男性 。</code> | <code>顔 の 毛 の ない 男性 と 青い シャツ を 着た 女性 が 座って い ます 。</code> | <code>1</code> |
|
207 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
208 |
+
|
209 |
+
### Training Hyperparameters
|
210 |
+
#### Non-Default Hyperparameters
|
211 |
+
|
212 |
+
- `eval_strategy`: steps
|
213 |
+
- `num_train_epochs`: 1
|
214 |
+
- `multi_dataset_batch_sampler`: round_robin
|
215 |
+
|
216 |
+
#### All Hyperparameters
|
217 |
+
<details><summary>Click to expand</summary>
|
218 |
+
|
219 |
+
- `overwrite_output_dir`: False
|
220 |
+
- `do_predict`: False
|
221 |
+
- `eval_strategy`: steps
|
222 |
+
- `prediction_loss_only`: True
|
223 |
+
- `per_device_train_batch_size`: 8
|
224 |
+
- `per_device_eval_batch_size`: 8
|
225 |
+
- `per_gpu_train_batch_size`: None
|
226 |
+
- `per_gpu_eval_batch_size`: None
|
227 |
+
- `gradient_accumulation_steps`: 1
|
228 |
+
- `eval_accumulation_steps`: None
|
229 |
+
- `torch_empty_cache_steps`: None
|
230 |
+
- `learning_rate`: 5e-05
|
231 |
+
- `weight_decay`: 0.0
|
232 |
+
- `adam_beta1`: 0.9
|
233 |
+
- `adam_beta2`: 0.999
|
234 |
+
- `adam_epsilon`: 1e-08
|
235 |
+
- `max_grad_norm`: 1
|
236 |
+
- `num_train_epochs`: 1
|
237 |
+
- `max_steps`: -1
|
238 |
+
- `lr_scheduler_type`: linear
|
239 |
+
- `lr_scheduler_kwargs`: {}
|
240 |
+
- `warmup_ratio`: 0.0
|
241 |
+
- `warmup_steps`: 0
|
242 |
+
- `log_level`: passive
|
243 |
+
- `log_level_replica`: warning
|
244 |
+
- `log_on_each_node`: True
|
245 |
+
- `logging_nan_inf_filter`: True
|
246 |
+
- `save_safetensors`: True
|
247 |
+
- `save_on_each_node`: False
|
248 |
+
- `save_only_model`: False
|
249 |
+
- `restore_callback_states_from_checkpoint`: False
|
250 |
+
- `no_cuda`: False
|
251 |
+
- `use_cpu`: False
|
252 |
+
- `use_mps_device`: False
|
253 |
+
- `seed`: 42
|
254 |
+
- `data_seed`: None
|
255 |
+
- `jit_mode_eval`: False
|
256 |
+
- `use_ipex`: False
|
257 |
+
- `bf16`: False
|
258 |
+
- `fp16`: False
|
259 |
+
- `fp16_opt_level`: O1
|
260 |
+
- `half_precision_backend`: auto
|
261 |
+
- `bf16_full_eval`: False
|
262 |
+
- `fp16_full_eval`: False
|
263 |
+
- `tf32`: None
|
264 |
+
- `local_rank`: 0
|
265 |
+
- `ddp_backend`: None
|
266 |
+
- `tpu_num_cores`: None
|
267 |
+
- `tpu_metrics_debug`: False
|
268 |
+
- `debug`: []
|
269 |
+
- `dataloader_drop_last`: False
|
270 |
+
- `dataloader_num_workers`: 0
|
271 |
+
- `dataloader_prefetch_factor`: None
|
272 |
+
- `past_index`: -1
|
273 |
+
- `disable_tqdm`: False
|
274 |
+
- `remove_unused_columns`: True
|
275 |
+
- `label_names`: None
|
276 |
+
- `load_best_model_at_end`: False
|
277 |
+
- `ignore_data_skip`: False
|
278 |
+
- `fsdp`: []
|
279 |
+
- `fsdp_min_num_params`: 0
|
280 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
283 |
+
- `deepspeed`: None
|
284 |
+
- `label_smoothing_factor`: 0.0
|
285 |
+
- `optim`: adamw_torch
|
286 |
+
- `optim_args`: None
|
287 |
+
- `adafactor`: False
|
288 |
+
- `group_by_length`: False
|
289 |
+
- `length_column_name`: length
|
290 |
+
- `ddp_find_unused_parameters`: None
|
291 |
+
- `ddp_bucket_cap_mb`: None
|
292 |
+
- `ddp_broadcast_buffers`: False
|
293 |
+
- `dataloader_pin_memory`: True
|
294 |
+
- `dataloader_persistent_workers`: False
|
295 |
+
- `skip_memory_metrics`: True
|
296 |
+
- `use_legacy_prediction_loop`: False
|
297 |
+
- `push_to_hub`: False
|
298 |
+
- `resume_from_checkpoint`: None
|
299 |
+
- `hub_model_id`: None
|
300 |
+
- `hub_strategy`: every_save
|
301 |
+
- `hub_private_repo`: False
|
302 |
+
- `hub_always_push`: False
|
303 |
+
- `gradient_checkpointing`: False
|
304 |
+
- `gradient_checkpointing_kwargs`: None
|
305 |
+
- `include_inputs_for_metrics`: False
|
306 |
+
- `eval_do_concat_batches`: True
|
307 |
+
- `fp16_backend`: auto
|
308 |
+
- `push_to_hub_model_id`: None
|
309 |
+
- `push_to_hub_organization`: None
|
310 |
+
- `mp_parameters`:
|
311 |
+
- `auto_find_batch_size`: False
|
312 |
+
- `full_determinism`: False
|
313 |
+
- `torchdynamo`: None
|
314 |
+
- `ray_scope`: last
|
315 |
+
- `ddp_timeout`: 1800
|
316 |
+
- `torch_compile`: False
|
317 |
+
- `torch_compile_backend`: None
|
318 |
+
- `torch_compile_mode`: None
|
319 |
+
- `dispatch_batches`: None
|
320 |
+
- `split_batches`: None
|
321 |
+
- `include_tokens_per_second`: False
|
322 |
+
- `include_num_input_tokens_seen`: False
|
323 |
+
- `neftune_noise_alpha`: None
|
324 |
+
- `optim_target_modules`: None
|
325 |
+
- `batch_eval_metrics`: False
|
326 |
+
- `eval_on_start`: False
|
327 |
+
- `eval_use_gather_object`: False
|
328 |
+
- `batch_sampler`: batch_sampler
|
329 |
+
- `multi_dataset_batch_sampler`: round_robin
|
330 |
+
|
331 |
+
</details>
|
332 |
+
|
333 |
+
### Training Logs
|
334 |
+
| Epoch | Step | val_accuracy |
|
335 |
+
|:------:|:----:|:------------:|
|
336 |
+
| 0.1497 | 50 | 0.7265 |
|
337 |
+
| 0.2994 | 100 | 0.7696 |
|
338 |
+
| 0.4491 | 150 | 0.7715 |
|
339 |
+
| 0.5988 | 200 | 0.7659 |
|
340 |
+
| 0.7485 | 250 | 0.7790 |
|
341 |
+
| 0.8982 | 300 | 0.7771 |
|
342 |
+
| 1.0 | 334 | 0.7782 |
|
343 |
+
|
344 |
+
|
345 |
+
### Framework Versions
|
346 |
+
- Python: 3.10.14
|
347 |
+
- Sentence Transformers: 3.1.0
|
348 |
+
- Transformers: 4.44.2
|
349 |
+
- PyTorch: 2.4.1+cu121
|
350 |
+
- Accelerate: 0.34.2
|
351 |
+
- Datasets: 2.20.0
|
352 |
+
- Tokenizers: 0.19.1
|
353 |
+
|
354 |
+
## Citation
|
355 |
+
|
356 |
+
### BibTeX
|
357 |
+
|
358 |
+
#### Sentence Transformers and SoftmaxLoss
|
359 |
+
```bibtex
|
360 |
+
@inproceedings{reimers-2019-sentence-bert,
|
361 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
362 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
363 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
364 |
+
month = "11",
|
365 |
+
year = "2019",
|
366 |
+
publisher = "Association for Computational Linguistics",
|
367 |
+
url = "https://arxiv.org/abs/1908.10084",
|
368 |
+
}
|
369 |
+
```
|
370 |
+
|
371 |
+
<!--
|
372 |
+
## Glossary
|
373 |
+
|
374 |
+
*Clearly define terms in order to be accessible across audiences.*
|
375 |
+
-->
|
376 |
+
|
377 |
+
<!--
|
378 |
+
## Model Card Authors
|
379 |
+
|
380 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
381 |
+
-->
|
382 |
+
|
383 |
+
<!--
|
384 |
## Model Card Contact
|
385 |
|
386 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
387 |
+
-->
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 442491744
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7d48d5817dcd227deb4ec7ee5a28d9c10ba06a33946d13683f3a9d83b286744
|
3 |
size 442491744
|
runs/Sep16_22-40-15_default/events.out.tfevents.1726526417.default.5280.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1460a3634c1d755164e174435ce188f5d7ab91e529b16e7a514279f9e17071cc
|
3 |
+
size 4489
|