LeoChiuu commited on
Commit
82acf95
1 Parent(s): 338fcbd

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -1,201 +1,561 @@
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
- language: ja
4
- license: cc-by-sa-4.0
5
- model_name: LeoChiuu/sbert-base-ja-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/sbert-base-ja-arc
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Generates similarity embeddings
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** ja
27
- - **License:** cc-by-sa-4.0
28
- - **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
 
 
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
 
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
- [More Information Needed]
85
 
86
- ### Training Procedure
 
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
 
196
 
197
- [More Information Needed]
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:53
47
+ - loss:OnlineContrastiveLoss
48
+ widget:
49
+ - source_sentence: 水 の 近く の ドック に 2 人 が 座って い ます 。
50
+ sentences:
51
+ - 黄色 の 自転車 は レース で 他 の 自転車 を リード し ます 。
52
+ - 岩 の 上 に 座って いる 二 人
53
+ - 彼 ら は 外 に い ます 。
54
+ - source_sentence: 薄紫 色 の ドレス と 明るい ホット ピンク の 靴 を 着た 女性 が 、 水 と コーヒー を 飲んで テーブル に
55
+ 座って い ます 。
56
+ sentences:
57
+ - 人々 は 宝石 店 で 働いて い ます 。
58
+ - ブラインド デート の 女性 が 座って 、 デート が 現れる の を 待ち ます 。
59
+ - 二 人 の 男 が 芝生 で パルクール を 練習 して い ます 。
60
+ - source_sentence: 数 人 の 男性 が MMA の 戦い に 参加 して い ます 。
61
+ sentences:
62
+ - フットボール の 試合 を 開始 する 準備 が でき ました
63
+ - 男性 は バレエ に 参加 して い ます 。
64
+ - 車 は レース 中 です 。
65
+ - source_sentence: 4 人 が 見て いる 間 に 、 アジア の カップル が 結婚 して い ます 。
66
+ sentences:
67
+ - 水 で 泳ぐ 若い 男 。
68
+ - 木 を 切り 倒した 後 、 木 の 切り株 に 座って いる 少年 。
69
+ - 人々 は 結婚 して い ます 。
70
+ - source_sentence: 遊歩道 に 沿って 並ぶ 自転車 。
71
+ sentences:
72
+ - 男 は 中 の ソファ で 寝て い ます 。
73
+ - 人々 は 眼鏡 を かけて い ます
74
+ - 自転車 は 遊歩道 近く の ラック に あり ます 。
75
+ model-index:
76
+ - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
77
+ results:
78
+ - task:
79
+ type: binary-classification
80
+ name: Binary Classification
81
+ dataset:
82
+ name: custom arc semantics data jp
83
+ type: custom-arc-semantics-data-jp
84
+ metrics:
85
+ - type: cosine_accuracy
86
+ value: 0.5555555555555556
87
+ name: Cosine Accuracy
88
+ - type: cosine_accuracy_threshold
89
+ value: 0.9129454493522644
90
+ name: Cosine Accuracy Threshold
91
+ - type: cosine_f1
92
+ value: 0.7000000000000001
93
+ name: Cosine F1
94
+ - type: cosine_f1_threshold
95
+ value: 0.9129454493522644
96
+ name: Cosine F1 Threshold
97
+ - type: cosine_precision
98
+ value: 0.56
99
+ name: Cosine Precision
100
+ - type: cosine_recall
101
+ value: 0.9333333333333333
102
+ name: Cosine Recall
103
+ - type: cosine_ap
104
+ value: 0.4810183324948435
105
+ name: Cosine Ap
106
+ - type: dot_accuracy
107
+ value: 0.5555555555555556
108
+ name: Dot Accuracy
109
+ - type: dot_accuracy_threshold
110
+ value: 562.9078369140625
111
+ name: Dot Accuracy Threshold
112
+ - type: dot_f1
113
+ value: 0.7000000000000001
114
+ name: Dot F1
115
+ - type: dot_f1_threshold
116
+ value: 562.9078369140625
117
+ name: Dot F1 Threshold
118
+ - type: dot_precision
119
+ value: 0.56
120
+ name: Dot Precision
121
+ - type: dot_recall
122
+ value: 0.9333333333333333
123
+ name: Dot Recall
124
+ - type: dot_ap
125
+ value: 0.524000928437461
126
+ name: Dot Ap
127
+ - type: manhattan_accuracy
128
+ value: 0.5555555555555556
129
+ name: Manhattan Accuracy
130
+ - type: manhattan_accuracy_threshold
131
+ value: 228.25469970703125
132
+ name: Manhattan Accuracy Threshold
133
+ - type: manhattan_f1
134
+ value: 0.7000000000000001
135
+ name: Manhattan F1
136
+ - type: manhattan_f1_threshold
137
+ value: 228.25469970703125
138
+ name: Manhattan F1 Threshold
139
+ - type: manhattan_precision
140
+ value: 0.56
141
+ name: Manhattan Precision
142
+ - type: manhattan_recall
143
+ value: 0.9333333333333333
144
+ name: Manhattan Recall
145
+ - type: manhattan_ap
146
+ value: 0.483543585020096
147
+ name: Manhattan Ap
148
+ - type: euclidean_accuracy
149
+ value: 0.5555555555555556
150
+ name: Euclidean Accuracy
151
+ - type: euclidean_accuracy_threshold
152
+ value: 10.319003105163574
153
+ name: Euclidean Accuracy Threshold
154
+ - type: euclidean_f1
155
+ value: 0.7000000000000001
156
+ name: Euclidean F1
157
+ - type: euclidean_f1_threshold
158
+ value: 10.319003105163574
159
+ name: Euclidean F1 Threshold
160
+ - type: euclidean_precision
161
+ value: 0.56
162
+ name: Euclidean Precision
163
+ - type: euclidean_recall
164
+ value: 0.9333333333333333
165
+ name: Euclidean Recall
166
+ - type: euclidean_ap
167
+ value: 0.4810183324948435
168
+ name: Euclidean Ap
169
+ - type: max_accuracy
170
+ value: 0.5555555555555556
171
+ name: Max Accuracy
172
+ - type: max_accuracy_threshold
173
+ value: 562.9078369140625
174
+ name: Max Accuracy Threshold
175
+ - type: max_f1
176
+ value: 0.7000000000000001
177
+ name: Max F1
178
+ - type: max_f1_threshold
179
+ value: 562.9078369140625
180
+ name: Max F1 Threshold
181
+ - type: max_precision
182
+ value: 0.56
183
+ name: Max Precision
184
+ - type: max_recall
185
+ value: 0.9333333333333333
186
+ name: Max Recall
187
+ - type: max_ap
188
+ value: 0.524000928437461
189
+ name: Max Ap
190
  ---
191
 
192
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
193
 
194
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
195
 
196
  ## Model Details
197
 
198
  ### Model Description
199
+ - **Model Type:** Sentence Transformer
200
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
201
+ - **Maximum Sequence Length:** 512 tokens
202
+ - **Output Dimensionality:** 768 tokens
203
+ - **Similarity Function:** Cosine Similarity
204
+ - **Training Dataset:**
205
+ - csv
206
+ <!-- - **Language:** Unknown -->
207
+ <!-- - **License:** Unknown -->
208
 
209
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
212
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
213
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
214
 
215
+ ### Full Model Architecture
216
 
217
+ ```
218
+ SentenceTransformer(
219
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
220
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
221
+ )
222
+ ```
223
 
224
+ ## Usage
225
 
226
+ ### Direct Usage (Sentence Transformers)
227
 
228
+ First install the Sentence Transformers library:
229
 
230
+ ```bash
231
+ pip install -U sentence-transformers
232
+ ```
 
 
233
 
234
+ Then you can load this model and run inference.
235
+ ```python
236
+ from sentence_transformers import SentenceTransformer
237
 
238
+ # Download from the 🤗 Hub
239
+ model = SentenceTransformer("sentence_transformers_model_id")
240
+ # Run inference
241
+ sentences = [
242
+ '遊歩道 に 沿って 並ぶ 自転車 。',
243
+ '自転車 は 遊歩道 近く の ラック に あり ます 。',
244
+ '人々 は 眼鏡 を かけて い ます',
245
+ ]
246
+ embeddings = model.encode(sentences)
247
+ print(embeddings.shape)
248
+ # [3, 768]
249
 
250
+ # Get the similarity scores for the embeddings
251
+ similarities = model.similarity(embeddings, embeddings)
252
+ print(similarities.shape)
253
+ # [3, 3]
254
+ ```
255
 
256
+ <!--
257
+ ### Direct Usage (Transformers)
258
 
259
+ <details><summary>Click to see the direct usage in Transformers</summary>
260
 
261
+ </details>
262
+ -->
 
 
 
 
 
263
 
264
+ <!--
265
+ ### Downstream Usage (Sentence Transformers)
266
 
267
+ You can finetune this model on your own dataset.
268
 
269
+ <details><summary>Click to expand</summary>
270
 
271
+ </details>
272
+ -->
273
 
274
+ <!--
275
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
278
+ -->
279
 
280
  ## Evaluation
281
 
282
+ ### Metrics
283
+
284
+ #### Binary Classification
285
+ * Dataset: `custom-arc-semantics-data-jp`
286
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
287
+
288
+ | Metric | Value |
289
+ |:-----------------------------|:----------|
290
+ | cosine_accuracy | 0.5556 |
291
+ | cosine_accuracy_threshold | 0.9129 |
292
+ | cosine_f1 | 0.7 |
293
+ | cosine_f1_threshold | 0.9129 |
294
+ | cosine_precision | 0.56 |
295
+ | cosine_recall | 0.9333 |
296
+ | cosine_ap | 0.481 |
297
+ | dot_accuracy | 0.5556 |
298
+ | dot_accuracy_threshold | 562.9078 |
299
+ | dot_f1 | 0.7 |
300
+ | dot_f1_threshold | 562.9078 |
301
+ | dot_precision | 0.56 |
302
+ | dot_recall | 0.9333 |
303
+ | dot_ap | 0.524 |
304
+ | manhattan_accuracy | 0.5556 |
305
+ | manhattan_accuracy_threshold | 228.2547 |
306
+ | manhattan_f1 | 0.7 |
307
+ | manhattan_f1_threshold | 228.2547 |
308
+ | manhattan_precision | 0.56 |
309
+ | manhattan_recall | 0.9333 |
310
+ | manhattan_ap | 0.4835 |
311
+ | euclidean_accuracy | 0.5556 |
312
+ | euclidean_accuracy_threshold | 10.319 |
313
+ | euclidean_f1 | 0.7 |
314
+ | euclidean_f1_threshold | 10.319 |
315
+ | euclidean_precision | 0.56 |
316
+ | euclidean_recall | 0.9333 |
317
+ | euclidean_ap | 0.481 |
318
+ | max_accuracy | 0.5556 |
319
+ | max_accuracy_threshold | 562.9078 |
320
+ | max_f1 | 0.7 |
321
+ | max_f1_threshold | 562.9078 |
322
+ | max_precision | 0.56 |
323
+ | max_recall | 0.9333 |
324
+ | **max_ap** | **0.524** |
325
+
326
+ <!--
327
+ ## Bias, Risks and Limitations
328
+
329
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
330
+ -->
331
+
332
+ <!--
333
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
 
335
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
336
+ -->
337
 
338
+ ## Training Details
339
 
340
+ ### Training Dataset
341
+
342
+ #### csv
343
+
344
+ * Dataset: csv
345
+ * Size: 53 training samples
346
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
347
+ * Approximate statistics based on the first 53 samples:
348
+ | | text1 | text2 | label |
349
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
350
+ | type | string | string | int |
351
+ | details | <ul><li>min: 14 tokens</li><li>mean: 33.04 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.92 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~26.92%</li><li>1: ~73.08%</li></ul> |
352
+ * Samples:
353
+ | text1 | text2 | label |
354
+ |:---------------------------------------------------------------------------------------|:-----------------------------------|:---------------|
355
+ | <code>女性 の グループ が ステージ で 演奏 して い ます 。</code> | <code>パフォーマンス 中 の 女性 。</code> | <code>0</code> |
356
+ | <code>都市 を 歩き 回る 人々 。</code> | <code>歯科 治療 を 行って いる 人 。</code> | <code>1</code> |
357
+ | <code>青い ズボン と 重い 作業 ブーツ を 着た 男性 が 、 レンガ で 舗装 さ れた 通り から 白い 紙 吹雪 を 掃除 して い ます 。</code> | <code>男 が 通り を 掃除 して い ます 。</code> | <code>0</code> |
358
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
359
+
360
+ ### Evaluation Dataset
361
+
362
+ #### csv
363
+
364
+ * Dataset: csv
365
+ * Size: 53 evaluation samples
366
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
367
+ * Approximate statistics based on the first 53 samples:
368
+ | | text1 | text2 | label |
369
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
370
+ | type | string | string | int |
371
+ | details | <ul><li>min: 15 tokens</li><li>mean: 39.33 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 23.33 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~44.44%</li><li>1: ~55.56%</li></ul> |
372
+ * Samples:
373
+ | text1 | text2 | label |
374
+ |:----------------------------------------------------------------------------------------------------------|:------------------------------------------------|:---------------|
375
+ | <code>岩 の 多い 景色 を 見て 二 人</code> | <code>何 か を 見て いる 二 人 が い ます 。</code> | <code>0</code> |
376
+ | <code>白い ヘルメット と オレンジ色 の シャツ 、 ジーンズ 、 白い トラック と オレンジ色 の パイロン の 前 に 反射 ジャケット を 着た 金髪 の ストリート ワーカー 。</code> | <code>ストリート ワーカー は 保護 具 を 着用 して い ませ ん 。</code> | <code>1</code> |
377
+ | <code>白い 帽子 を かぶった 女性 が 、 鮮やかな 色 の 岩 の 風景 を 描いて い ます 。 岩 層 自体 が 背景 に 見え ます 。</code> | <code>誰 か が 肖像 画 を 描いて い ます 。</code> | <code>1</code> |
378
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
379
+
380
+ ### Training Hyperparameters
381
+ #### Non-Default Hyperparameters
382
+
383
+ - `eval_strategy`: epoch
384
+ - `learning_rate`: 4e-05
385
+ - `num_train_epochs`: 7
386
+ - `warmup_ratio`: 0.4
387
+ - `fp16`: True
388
+ - `batch_sampler`: no_duplicates
389
+
390
+ #### All Hyperparameters
391
+ <details><summary>Click to expand</summary>
392
+
393
+ - `overwrite_output_dir`: False
394
+ - `do_predict`: False
395
+ - `eval_strategy`: epoch
396
+ - `prediction_loss_only`: True
397
+ - `per_device_train_batch_size`: 8
398
+ - `per_device_eval_batch_size`: 8
399
+ - `per_gpu_train_batch_size`: None
400
+ - `per_gpu_eval_batch_size`: None
401
+ - `gradient_accumulation_steps`: 1
402
+ - `eval_accumulation_steps`: None
403
+ - `torch_empty_cache_steps`: None
404
+ - `learning_rate`: 4e-05
405
+ - `weight_decay`: 0.0
406
+ - `adam_beta1`: 0.9
407
+ - `adam_beta2`: 0.999
408
+ - `adam_epsilon`: 1e-08
409
+ - `max_grad_norm`: 1.0
410
+ - `num_train_epochs`: 7
411
+ - `max_steps`: -1
412
+ - `lr_scheduler_type`: linear
413
+ - `lr_scheduler_kwargs`: {}
414
+ - `warmup_ratio`: 0.4
415
+ - `warmup_steps`: 0
416
+ - `log_level`: passive
417
+ - `log_level_replica`: warning
418
+ - `log_on_each_node`: True
419
+ - `logging_nan_inf_filter`: True
420
+ - `save_safetensors`: True
421
+ - `save_on_each_node`: False
422
+ - `save_only_model`: False
423
+ - `restore_callback_states_from_checkpoint`: False
424
+ - `no_cuda`: False
425
+ - `use_cpu`: False
426
+ - `use_mps_device`: False
427
+ - `seed`: 42
428
+ - `data_seed`: None
429
+ - `jit_mode_eval`: False
430
+ - `use_ipex`: False
431
+ - `bf16`: False
432
+ - `fp16`: True
433
+ - `fp16_opt_level`: O1
434
+ - `half_precision_backend`: auto
435
+ - `bf16_full_eval`: False
436
+ - `fp16_full_eval`: False
437
+ - `tf32`: None
438
+ - `local_rank`: 0
439
+ - `ddp_backend`: None
440
+ - `tpu_num_cores`: None
441
+ - `tpu_metrics_debug`: False
442
+ - `debug`: []
443
+ - `dataloader_drop_last`: False
444
+ - `dataloader_num_workers`: 0
445
+ - `dataloader_prefetch_factor`: None
446
+ - `past_index`: -1
447
+ - `disable_tqdm`: False
448
+ - `remove_unused_columns`: True
449
+ - `label_names`: None
450
+ - `load_best_model_at_end`: False
451
+ - `ignore_data_skip`: False
452
+ - `fsdp`: []
453
+ - `fsdp_min_num_params`: 0
454
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
455
+ - `fsdp_transformer_layer_cls_to_wrap`: None
456
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
457
+ - `deepspeed`: None
458
+ - `label_smoothing_factor`: 0.0
459
+ - `optim`: adamw_torch
460
+ - `optim_args`: None
461
+ - `adafactor`: False
462
+ - `group_by_length`: False
463
+ - `length_column_name`: length
464
+ - `ddp_find_unused_parameters`: None
465
+ - `ddp_bucket_cap_mb`: None
466
+ - `ddp_broadcast_buffers`: False
467
+ - `dataloader_pin_memory`: True
468
+ - `dataloader_persistent_workers`: False
469
+ - `skip_memory_metrics`: True
470
+ - `use_legacy_prediction_loop`: False
471
+ - `push_to_hub`: False
472
+ - `resume_from_checkpoint`: None
473
+ - `hub_model_id`: None
474
+ - `hub_strategy`: every_save
475
+ - `hub_private_repo`: False
476
+ - `hub_always_push`: False
477
+ - `gradient_checkpointing`: False
478
+ - `gradient_checkpointing_kwargs`: None
479
+ - `include_inputs_for_metrics`: False
480
+ - `eval_do_concat_batches`: True
481
+ - `fp16_backend`: auto
482
+ - `push_to_hub_model_id`: None
483
+ - `push_to_hub_organization`: None
484
+ - `mp_parameters`:
485
+ - `auto_find_batch_size`: False
486
+ - `full_determinism`: False
487
+ - `torchdynamo`: None
488
+ - `ray_scope`: last
489
+ - `ddp_timeout`: 1800
490
+ - `torch_compile`: False
491
+ - `torch_compile_backend`: None
492
+ - `torch_compile_mode`: None
493
+ - `dispatch_batches`: None
494
+ - `split_batches`: None
495
+ - `include_tokens_per_second`: False
496
+ - `include_num_input_tokens_seen`: False
497
+ - `neftune_noise_alpha`: None
498
+ - `optim_target_modules`: None
499
+ - `batch_eval_metrics`: False
500
+ - `eval_on_start`: False
501
+ - `eval_use_gather_object`: False
502
+ - `batch_sampler`: no_duplicates
503
+ - `multi_dataset_batch_sampler`: proportional
504
+
505
+ </details>
506
+
507
+ ### Training Logs
508
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
509
+ |:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
510
+ | 1.0 | 4 | 0.6833 | 0.8709 | 0.4569 |
511
+ | 2.0 | 8 | 0.5262 | 0.7567 | 0.4595 |
512
+ | 3.0 | 12 | 0.2961 | 0.6604 | 0.4828 |
513
+ | 4.0 | 16 | 0.1071 | 0.6101 | 0.4924 |
514
+ | 5.0 | 20 | 0.0052 | 0.6215 | 0.5214 |
515
+ | 6.0 | 24 | 0.0533 | 0.6281 | 0.5240 |
516
+ | 7.0 | 28 | 0.0014 | 0.6290 | 0.5240 |
517
+
518
+
519
+ ### Framework Versions
520
+ - Python: 3.10.14
521
+ - Sentence Transformers: 3.1.0
522
+ - Transformers: 4.44.2
523
+ - PyTorch: 2.4.1+cu121
524
+ - Accelerate: 0.34.2
525
+ - Datasets: 2.20.0
526
+ - Tokenizers: 0.19.1
527
+
528
+ ## Citation
529
+
530
+ ### BibTeX
531
+
532
+ #### Sentence Transformers
533
+ ```bibtex
534
+ @inproceedings{reimers-2019-sentence-bert,
535
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
536
+ author = "Reimers, Nils and Gurevych, Iryna",
537
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
538
+ month = "11",
539
+ year = "2019",
540
+ publisher = "Association for Computational Linguistics",
541
+ url = "https://arxiv.org/abs/1908.10084",
542
+ }
543
+ ```
544
+
545
+ <!--
546
+ ## Glossary
547
+
548
+ *Clearly define terms in order to be accessible across audiences.*
549
+ -->
550
+
551
+ <!--
552
+ ## Model Card Authors
553
+
554
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
555
+ -->
556
+
557
+ <!--
558
  ## Model Card Contact
559
 
560
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
561
+ -->
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:467b3f5baf1acf36ff93be92d0381ae666c36a16a619be3d23e54522d0b3952d
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd602d95c387bdccca456136a9041f416ad35f2bc8af448508e3c7f995a27580
3
  size 442491744
runs/Sep17_18-44-12_default/events.out.tfevents.1726598653.default.4090.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a38887491408a12bbaf465f4568c62036adb0e41e7b1b8f428e54a0cfc0996
3
+ size 29287