LeoChiuu commited on
Commit
a656692
1 Parent(s): c05ef8c

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -1,201 +1,573 @@
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
- language: ja
4
- license: cc-by-sa-4.0
5
- model_name: LeoChiuu/sbert-base-ja-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/sbert-base-ja-arc
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Generates similarity embeddings
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** ja
27
- - **License:** cc-by-sa-4.0
28
- - **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
 
 
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
 
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
- [More Information Needed]
85
 
86
- ### Training Procedure
 
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
 
196
 
197
- [More Information Needed]
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:53
47
+ - loss:CoSENTLoss
48
+ widget:
49
+ - source_sentence: 男性 の グループ は 古い 軍事 衣装 を 着て 、 パレード の ように 楽器 を 運んで い ます 。
50
+ sentences:
51
+ - 車 は レース 中 です 。
52
+ - 自転車 の 挑戦 に 勝とう と する 人々 の グループ 。
53
+ - まるで 戦争 の 準備 の ように 、 男性 の グループ は 武器 を 運んで い ます 。
54
+ - source_sentence: 黒い 長い 髪 を した 女性 が 、 黒い ベルト の 付いた 赤い ドレス を 着て 歩いて い ます 。
55
+ sentences:
56
+ - ブロンド の 女の子 が 砂 の 中 の 丸太 を 踏んで い ます 。
57
+ - 女性 は 子供 を なだめて い ます 。
58
+ - 女性 は 髪 を 切った 。
59
+ - source_sentence: 数 人 の 男の子 が 屋内 サッカー を し ます 。
60
+ sentences:
61
+ - 男の子 の グループ が 中 に い ます 。
62
+ - フットボール の 試合 を 開始 する 準備 が でき ました
63
+ - 女の子 は 、 かつて 木 が 立って いた 裏庭 を 見 ながら 中 に い ました 。
64
+ model-index:
65
+ - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
66
+ results:
67
+ - task:
68
+ type: binary-classification
69
+ name: Binary Classification
70
+ dataset:
71
+ name: custom arc semantics data jp
72
+ type: custom-arc-semantics-data-jp
73
+ metrics:
74
+ - type: cosine_accuracy
75
+ value: 0.7272727272727273
76
+ name: Cosine Accuracy
77
+ - type: cosine_accuracy_threshold
78
+ value: 0.7481245994567871
79
+ name: Cosine Accuracy Threshold
80
+ - type: cosine_f1
81
+ value: 0.8235294117647058
82
+ name: Cosine F1
83
+ - type: cosine_f1_threshold
84
+ value: 0.7481245994567871
85
+ name: Cosine F1 Threshold
86
+ - type: cosine_precision
87
+ value: 0.7
88
+ name: Cosine Precision
89
+ - type: cosine_recall
90
+ value: 1.0
91
+ name: Cosine Recall
92
+ - type: cosine_ap
93
+ value: 0.5709183673469387
94
+ name: Cosine Ap
95
+ - type: dot_accuracy
96
+ value: 0.7272727272727273
97
+ name: Dot Accuracy
98
+ - type: dot_accuracy_threshold
99
+ value: 417.00994873046875
100
+ name: Dot Accuracy Threshold
101
+ - type: dot_f1
102
+ value: 0.8235294117647058
103
+ name: Dot F1
104
+ - type: dot_f1_threshold
105
+ value: 417.00994873046875
106
+ name: Dot F1 Threshold
107
+ - type: dot_precision
108
+ value: 0.7
109
+ name: Dot Precision
110
+ - type: dot_recall
111
+ value: 1.0
112
+ name: Dot Recall
113
+ - type: dot_ap
114
+ value: 0.5566326530612244
115
+ name: Dot Ap
116
+ - type: manhattan_accuracy
117
+ value: 0.7272727272727273
118
+ name: Manhattan Accuracy
119
+ - type: manhattan_accuracy_threshold
120
+ value: 371.4115905761719
121
+ name: Manhattan Accuracy Threshold
122
+ - type: manhattan_f1
123
+ value: 0.8235294117647058
124
+ name: Manhattan F1
125
+ - type: manhattan_f1_threshold
126
+ value: 371.4115905761719
127
+ name: Manhattan F1 Threshold
128
+ - type: manhattan_precision
129
+ value: 0.7
130
+ name: Manhattan Precision
131
+ - type: manhattan_recall
132
+ value: 1.0
133
+ name: Manhattan Recall
134
+ - type: manhattan_ap
135
+ value: 0.5709183673469387
136
+ name: Manhattan Ap
137
+ - type: euclidean_accuracy
138
+ value: 0.7272727272727273
139
+ name: Euclidean Accuracy
140
+ - type: euclidean_accuracy_threshold
141
+ value: 16.753753662109375
142
+ name: Euclidean Accuracy Threshold
143
+ - type: euclidean_f1
144
+ value: 0.8235294117647058
145
+ name: Euclidean F1
146
+ - type: euclidean_f1_threshold
147
+ value: 16.753753662109375
148
+ name: Euclidean F1 Threshold
149
+ - type: euclidean_precision
150
+ value: 0.7
151
+ name: Euclidean Precision
152
+ - type: euclidean_recall
153
+ value: 1.0
154
+ name: Euclidean Recall
155
+ - type: euclidean_ap
156
+ value: 0.5709183673469387
157
+ name: Euclidean Ap
158
+ - type: max_accuracy
159
+ value: 0.7272727272727273
160
+ name: Max Accuracy
161
+ - type: max_accuracy_threshold
162
+ value: 417.00994873046875
163
+ name: Max Accuracy Threshold
164
+ - type: max_f1
165
+ value: 0.8235294117647058
166
+ name: Max F1
167
+ - type: max_f1_threshold
168
+ value: 417.00994873046875
169
+ name: Max F1 Threshold
170
+ - type: max_precision
171
+ value: 0.7
172
+ name: Max Precision
173
+ - type: max_recall
174
+ value: 1.0
175
+ name: Max Recall
176
+ - type: max_ap
177
+ value: 0.5709183673469387
178
+ name: Max Ap
179
  ---
180
 
181
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
182
 
183
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
184
 
185
  ## Model Details
186
 
187
  ### Model Description
188
+ - **Model Type:** Sentence Transformer
189
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
190
+ - **Maximum Sequence Length:** 512 tokens
191
+ - **Output Dimensionality:** 768 tokens
192
+ - **Similarity Function:** Cosine Similarity
193
+ - **Training Dataset:**
194
+ - csv
195
+ <!-- - **Language:** Unknown -->
196
+ <!-- - **License:** Unknown -->
197
 
198
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
200
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
201
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
202
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
203
 
204
+ ### Full Model Architecture
205
 
206
+ ```
207
+ SentenceTransformer(
208
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
209
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
210
+ )
211
+ ```
212
 
213
+ ## Usage
214
 
215
+ ### Direct Usage (Sentence Transformers)
216
 
217
+ First install the Sentence Transformers library:
218
 
219
+ ```bash
220
+ pip install -U sentence-transformers
221
+ ```
 
 
222
 
223
+ Then you can load this model and run inference.
224
+ ```python
225
+ from sentence_transformers import SentenceTransformer
226
 
227
+ # Download from the 🤗 Hub
228
+ model = SentenceTransformer("sentence_transformers_model_id")
229
+ # Run inference
230
+ sentences = [
231
+ '数 人 の 男の子 が 屋内 サッカー を し ます 。',
232
+ '男の子 の グループ が 中 に い ます 。',
233
+ 'フットボール の 試合 を 開始 する 準備 が でき ました',
234
+ ]
235
+ embeddings = model.encode(sentences)
236
+ print(embeddings.shape)
237
+ # [3, 768]
238
 
239
+ # Get the similarity scores for the embeddings
240
+ similarities = model.similarity(embeddings, embeddings)
241
+ print(similarities.shape)
242
+ # [3, 3]
243
+ ```
244
 
245
+ <!--
246
+ ### Direct Usage (Transformers)
247
 
248
+ <details><summary>Click to see the direct usage in Transformers</summary>
249
 
250
+ </details>
251
+ -->
 
 
 
 
 
252
 
253
+ <!--
254
+ ### Downstream Usage (Sentence Transformers)
255
 
256
+ You can finetune this model on your own dataset.
257
 
258
+ <details><summary>Click to expand</summary>
259
 
260
+ </details>
261
+ -->
262
 
263
+ <!--
264
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
265
 
266
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
267
+ -->
268
 
269
  ## Evaluation
270
 
271
+ ### Metrics
272
+
273
+ #### Binary Classification
274
+ * Dataset: `custom-arc-semantics-data-jp`
275
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
276
+
277
+ | Metric | Value |
278
+ |:-----------------------------|:-----------|
279
+ | cosine_accuracy | 0.7273 |
280
+ | cosine_accuracy_threshold | 0.7481 |
281
+ | cosine_f1 | 0.8235 |
282
+ | cosine_f1_threshold | 0.7481 |
283
+ | cosine_precision | 0.7 |
284
+ | cosine_recall | 1.0 |
285
+ | cosine_ap | 0.5709 |
286
+ | dot_accuracy | 0.7273 |
287
+ | dot_accuracy_threshold | 417.0099 |
288
+ | dot_f1 | 0.8235 |
289
+ | dot_f1_threshold | 417.0099 |
290
+ | dot_precision | 0.7 |
291
+ | dot_recall | 1.0 |
292
+ | dot_ap | 0.5566 |
293
+ | manhattan_accuracy | 0.7273 |
294
+ | manhattan_accuracy_threshold | 371.4116 |
295
+ | manhattan_f1 | 0.8235 |
296
+ | manhattan_f1_threshold | 371.4116 |
297
+ | manhattan_precision | 0.7 |
298
+ | manhattan_recall | 1.0 |
299
+ | manhattan_ap | 0.5709 |
300
+ | euclidean_accuracy | 0.7273 |
301
+ | euclidean_accuracy_threshold | 16.7538 |
302
+ | euclidean_f1 | 0.8235 |
303
+ | euclidean_f1_threshold | 16.7538 |
304
+ | euclidean_precision | 0.7 |
305
+ | euclidean_recall | 1.0 |
306
+ | euclidean_ap | 0.5709 |
307
+ | max_accuracy | 0.7273 |
308
+ | max_accuracy_threshold | 417.0099 |
309
+ | max_f1 | 0.8235 |
310
+ | max_f1_threshold | 417.0099 |
311
+ | max_precision | 0.7 |
312
+ | max_recall | 1.0 |
313
+ | **max_ap** | **0.5709** |
314
+
315
+ <!--
316
+ ## Bias, Risks and Limitations
317
+
318
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
319
+ -->
320
+
321
+ <!--
322
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
324
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
325
+ -->
326
 
327
+ ## Training Details
328
 
329
+ ### Training Dataset
330
+
331
+ #### csv
332
+
333
+ * Dataset: csv
334
+ * Size: 53 training samples
335
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
336
+ * Approximate statistics based on the first 53 samples:
337
+ | | text1 | text2 | label |
338
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
339
+ | type | string | string | int |
340
+ | details | <ul><li>min: 14 tokens</li><li>mean: 36.0 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 21.62 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~35.71%</li><li>1: ~64.29%</li></ul> |
341
+ * Samples:
342
+ | text1 | text2 | label |
343
+ |:-----------------------------------------------|:---------------------------------------------------------------|:---------------|
344
+ | <code>遊歩道 に 沿って 並ぶ 自転車 。</code> | <code>自転車 は 遊歩道 近く の ラック に あり ます 。</code> | <code>1</code> |
345
+ | <code>2 人 の カップル は バス で おしゃべり して い ます 。</code> | <code>2 つ の カップル は バス停 で 寝て い ます 。</code> | <code>1</code> |
346
+ | <code>子供 たち の グループ が 外 の スプリンクラー で 遊ぶ 。</code> | <code>子供 たち の グループ は 、 屋外 の スプリンクラー で タグ を 再生 して い ます 。</code> | <code>1</code> |
347
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
348
+ ```json
349
+ {
350
+ "scale": 20.0,
351
+ "similarity_fct": "pairwise_cos_sim"
352
+ }
353
+ ```
354
+
355
+ ### Evaluation Dataset
356
+
357
+ #### csv
358
+
359
+ * Dataset: csv
360
+ * Size: 53 evaluation samples
361
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
362
+ * Approximate statistics based on the first 53 samples:
363
+ | | text1 | text2 | label |
364
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
365
+ | type | string | string | int |
366
+ | details | <ul><li>min: 17 tokens</li><li>mean: 37.18 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 24.18 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~36.36%</li><li>1: ~63.64%</li></ul> |
367
+ * Samples:
368
+ | text1 | text2 | label |
369
+ |:------------------------------------------------------------------------------------|:---------------------------------------------|:---------------|
370
+ | <code>トラック を 自転車 で 走る 人々 の グループ 。</code> | <code>自転車 の 挑戦 に 勝とう と する 人々 の グループ 。</code> | <code>1</code> |
371
+ | <code>女性 が 通り の 角 に ある 車 椅子 に 乗って おり 、 白い シャツ を 着た 男性 が 通り を 渡ろう と して い ます 。</code> | <code>女性 と 男性 は ニューヨーク に い ます 。</code> | <code>1</code> |
372
+ | <code>サッカー 選手 は 、 ゲーム の 準備 を 整え ます 。</code> | <code>フットボール の 試合 を 開始 する 準備 が でき ました</code> | <code>0</code> |
373
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
374
+ ```json
375
+ {
376
+ "scale": 20.0,
377
+ "similarity_fct": "pairwise_cos_sim"
378
+ }
379
+ ```
380
+
381
+ ### Training Hyperparameters
382
+ #### Non-Default Hyperparameters
383
+
384
+ - `eval_strategy`: epoch
385
+ - `learning_rate`: 2e-05
386
+ - `num_train_epochs`: 7
387
+ - `warmup_ratio`: 0.4
388
+ - `fp16`: True
389
+ - `batch_sampler`: no_duplicates
390
+
391
+ #### All Hyperparameters
392
+ <details><summary>Click to expand</summary>
393
+
394
+ - `overwrite_output_dir`: False
395
+ - `do_predict`: False
396
+ - `eval_strategy`: epoch
397
+ - `prediction_loss_only`: True
398
+ - `per_device_train_batch_size`: 8
399
+ - `per_device_eval_batch_size`: 8
400
+ - `per_gpu_train_batch_size`: None
401
+ - `per_gpu_eval_batch_size`: None
402
+ - `gradient_accumulation_steps`: 1
403
+ - `eval_accumulation_steps`: None
404
+ - `torch_empty_cache_steps`: None
405
+ - `learning_rate`: 2e-05
406
+ - `weight_decay`: 0.0
407
+ - `adam_beta1`: 0.9
408
+ - `adam_beta2`: 0.999
409
+ - `adam_epsilon`: 1e-08
410
+ - `max_grad_norm`: 1.0
411
+ - `num_train_epochs`: 7
412
+ - `max_steps`: -1
413
+ - `lr_scheduler_type`: linear
414
+ - `lr_scheduler_kwargs`: {}
415
+ - `warmup_ratio`: 0.4
416
+ - `warmup_steps`: 0
417
+ - `log_level`: passive
418
+ - `log_level_replica`: warning
419
+ - `log_on_each_node`: True
420
+ - `logging_nan_inf_filter`: True
421
+ - `save_safetensors`: True
422
+ - `save_on_each_node`: False
423
+ - `save_only_model`: False
424
+ - `restore_callback_states_from_checkpoint`: False
425
+ - `no_cuda`: False
426
+ - `use_cpu`: False
427
+ - `use_mps_device`: False
428
+ - `seed`: 42
429
+ - `data_seed`: None
430
+ - `jit_mode_eval`: False
431
+ - `use_ipex`: False
432
+ - `bf16`: False
433
+ - `fp16`: True
434
+ - `fp16_opt_level`: O1
435
+ - `half_precision_backend`: auto
436
+ - `bf16_full_eval`: False
437
+ - `fp16_full_eval`: False
438
+ - `tf32`: None
439
+ - `local_rank`: 0
440
+ - `ddp_backend`: None
441
+ - `tpu_num_cores`: None
442
+ - `tpu_metrics_debug`: False
443
+ - `debug`: []
444
+ - `dataloader_drop_last`: False
445
+ - `dataloader_num_workers`: 0
446
+ - `dataloader_prefetch_factor`: None
447
+ - `past_index`: -1
448
+ - `disable_tqdm`: False
449
+ - `remove_unused_columns`: True
450
+ - `label_names`: None
451
+ - `load_best_model_at_end`: False
452
+ - `ignore_data_skip`: False
453
+ - `fsdp`: []
454
+ - `fsdp_min_num_params`: 0
455
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
456
+ - `fsdp_transformer_layer_cls_to_wrap`: None
457
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
458
+ - `deepspeed`: None
459
+ - `label_smoothing_factor`: 0.0
460
+ - `optim`: adamw_torch
461
+ - `optim_args`: None
462
+ - `adafactor`: False
463
+ - `group_by_length`: False
464
+ - `length_column_name`: length
465
+ - `ddp_find_unused_parameters`: None
466
+ - `ddp_bucket_cap_mb`: None
467
+ - `ddp_broadcast_buffers`: False
468
+ - `dataloader_pin_memory`: True
469
+ - `dataloader_persistent_workers`: False
470
+ - `skip_memory_metrics`: True
471
+ - `use_legacy_prediction_loop`: False
472
+ - `push_to_hub`: False
473
+ - `resume_from_checkpoint`: None
474
+ - `hub_model_id`: None
475
+ - `hub_strategy`: every_save
476
+ - `hub_private_repo`: False
477
+ - `hub_always_push`: False
478
+ - `gradient_checkpointing`: False
479
+ - `gradient_checkpointing_kwargs`: None
480
+ - `include_inputs_for_metrics`: False
481
+ - `eval_do_concat_batches`: True
482
+ - `fp16_backend`: auto
483
+ - `push_to_hub_model_id`: None
484
+ - `push_to_hub_organization`: None
485
+ - `mp_parameters`:
486
+ - `auto_find_batch_size`: False
487
+ - `full_determinism`: False
488
+ - `torchdynamo`: None
489
+ - `ray_scope`: last
490
+ - `ddp_timeout`: 1800
491
+ - `torch_compile`: False
492
+ - `torch_compile_backend`: None
493
+ - `torch_compile_mode`: None
494
+ - `dispatch_batches`: None
495
+ - `split_batches`: None
496
+ - `include_tokens_per_second`: False
497
+ - `include_num_input_tokens_seen`: False
498
+ - `neftune_noise_alpha`: None
499
+ - `optim_target_modules`: None
500
+ - `batch_eval_metrics`: False
501
+ - `eval_on_start`: False
502
+ - `eval_use_gather_object`: False
503
+ - `batch_sampler`: no_duplicates
504
+ - `multi_dataset_batch_sampler`: proportional
505
+
506
+ </details>
507
+
508
+ ### Training Logs
509
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
510
+ |:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
511
+ | 1.0 | 6 | 8.6013 | 7.0271 | 0.6203 |
512
+ | 2.0 | 12 | 7.0321 | 6.4472 | 0.6203 |
513
+ | 3.0 | 18 | 4.7463 | 5.3546 | 0.5973 |
514
+ | 4.0 | 24 | 2.5094 | 4.6422 | 0.5566 |
515
+ | 5.0 | 30 | 1.3979 | 4.5053 | 0.5709 |
516
+ | 6.0 | 36 | 0.8408 | 4.7112 | 0.5709 |
517
+ | 7.0 | 42 | 0.8168 | 4.8408 | 0.5709 |
518
+
519
+
520
+ ### Framework Versions
521
+ - Python: 3.10.14
522
+ - Sentence Transformers: 3.1.0
523
+ - Transformers: 4.44.2
524
+ - PyTorch: 2.4.1+cu121
525
+ - Accelerate: 0.34.2
526
+ - Datasets: 2.20.0
527
+ - Tokenizers: 0.19.1
528
+
529
+ ## Citation
530
+
531
+ ### BibTeX
532
+
533
+ #### Sentence Transformers
534
+ ```bibtex
535
+ @inproceedings{reimers-2019-sentence-bert,
536
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
537
+ author = "Reimers, Nils and Gurevych, Iryna",
538
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
539
+ month = "11",
540
+ year = "2019",
541
+ publisher = "Association for Computational Linguistics",
542
+ url = "https://arxiv.org/abs/1908.10084",
543
+ }
544
+ ```
545
+
546
+ #### CoSENTLoss
547
+ ```bibtex
548
+ @online{kexuefm-8847,
549
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
550
+ author={Su Jianlin},
551
+ year={2022},
552
+ month={Jan},
553
+ url={https://kexue.fm/archives/8847},
554
+ }
555
+ ```
556
+
557
+ <!--
558
+ ## Glossary
559
+
560
+ *Clearly define terms in order to be accessible across audiences.*
561
+ -->
562
+
563
+ <!--
564
+ ## Model Card Authors
565
+
566
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
567
+ -->
568
+
569
+ <!--
570
  ## Model Card Contact
571
 
572
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
573
+ -->
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:11289ad3b76cfd7cb74302ed4af41feddd84af8ad2e28f01cac891d9b87a34d2
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f027779c77a8e78b6312156238d39c2a081c9e8d4d5f8e50adf3e93288c59b
3
  size 442491744
runs/Sep17_17-10-35_default/events.out.tfevents.1726593036.default.328.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:267340d0666e518a9735377638e2e175d23c86e58e7177e2e70208beb90932cd
3
+ size 22241
runs/Sep17_17-17-39_default/events.out.tfevents.1726593460.default.493.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddb7b46b0116ec7a32c8f83d8172c036be906c8602d3fe72e824614ed3cb3bcd
3
+ size 29287