LeoChiuu commited on
Commit
bebbf8d
1 Parent(s): ee48908

Add new SentenceTransformer model.

Browse files
README.md CHANGED
@@ -1,201 +1,563 @@
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
- language: ja
4
- license: cc-by-sa-4.0
5
- model_name: LeoChiuu/sbert-base-ja-arc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for LeoChiuu/sbert-base-ja-arc
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
 
 
 
 
 
 
 
 
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Generates similarity embeddings
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** ja
27
- - **License:** cc-by-sa-4.0
28
- - **Finetuned from model [optional]:** colorfulscoop/sbert-base-ja
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
 
42
- ### Direct Use
 
 
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
 
 
 
 
 
47
 
48
- ### Downstream Use [optional]
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
53
 
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
- ## Bias, Risks, and Limitations
 
 
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
 
63
 
64
- [More Information Needed]
65
-
66
- ### Recommendations
 
 
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
 
84
- [More Information Needed]
85
 
86
- ### Training Procedure
 
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
 
196
 
197
- [More Information Needed]
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
 
1
  ---
2
  base_model: colorfulscoop/sbert-base-ja
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:4265
47
+ - loss:CosineSimilarityLoss
48
+ widget:
49
+ - source_sentence: 晩飯の時
50
+ sentences:
51
+ - ぶさいく
52
+ - ワゴンにある?
53
+ - スカーフは木材の山の中?
54
+ - source_sentence: どっちも要らない
55
+ sentences:
56
+ - 屋根裏部屋の猫のぬいぐるみ
57
+ - 他は?
58
+ - ジョウロの中にスカーフはある?
59
+ - source_sentence: 自分がやった
60
+ sentences:
61
+ - やりたくない
62
+ - かみゆ
63
+ - どこ?
64
+ - source_sentence: 井戸を使った
65
+ sentences:
66
+ - 井戸はどこ?
67
+ - 何か思い出せることは?
68
+ - 家の外へ行こう
69
+ - source_sentence: 他にはないの?
70
+ sentences:
71
+ - 長老
72
+ - 井戸へ訪れたことがある?
73
+ - ジャック
74
+ model-index:
75
+ - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
76
+ results:
77
+ - task:
78
+ type: binary-classification
79
+ name: Binary Classification
80
+ dataset:
81
+ name: custom arc semantics data jp
82
+ type: custom-arc-semantics-data-jp
83
+ metrics:
84
+ - type: cosine_accuracy
85
+ value: 0.9615745079662605
86
+ name: Cosine Accuracy
87
+ - type: cosine_accuracy_threshold
88
+ value: 0.5470845699310303
89
+ name: Cosine Accuracy Threshold
90
+ - type: cosine_f1
91
+ value: 0.922201138519924
92
+ name: Cosine F1
93
+ - type: cosine_f1_threshold
94
+ value: 0.5470845699310303
95
+ name: Cosine F1 Threshold
96
+ - type: cosine_precision
97
+ value: 0.94921875
98
+ name: Cosine Precision
99
+ - type: cosine_recall
100
+ value: 0.8966789667896679
101
+ name: Cosine Recall
102
+ - type: cosine_ap
103
+ value: 0.9450208727716535
104
+ name: Cosine Ap
105
+ - type: dot_accuracy
106
+ value: 0.9597000937207123
107
+ name: Dot Accuracy
108
+ - type: dot_accuracy_threshold
109
+ value: 291.93450927734375
110
+ name: Dot Accuracy Threshold
111
+ - type: dot_f1
112
+ value: 0.9184060721062619
113
+ name: Dot F1
114
+ - type: dot_f1_threshold
115
+ value: 291.93450927734375
116
+ name: Dot F1 Threshold
117
+ - type: dot_precision
118
+ value: 0.9453125
119
+ name: Dot Precision
120
+ - type: dot_recall
121
+ value: 0.8929889298892989
122
+ name: Dot Recall
123
+ - type: dot_ap
124
+ value: 0.9552306119316933
125
+ name: Dot Ap
126
+ - type: manhattan_accuracy
127
+ value: 0.9625117150890347
128
+ name: Manhattan Accuracy
129
+ - type: manhattan_accuracy_threshold
130
+ value: 464.1397399902344
131
+ name: Manhattan Accuracy Threshold
132
+ - type: manhattan_f1
133
+ value: 0.9233716475095786
134
+ name: Manhattan F1
135
+ - type: manhattan_f1_threshold
136
+ value: 464.1397399902344
137
+ name: Manhattan F1 Threshold
138
+ - type: manhattan_precision
139
+ value: 0.9601593625498008
140
+ name: Manhattan Precision
141
+ - type: manhattan_recall
142
+ value: 0.8892988929889298
143
+ name: Manhattan Recall
144
+ - type: manhattan_ap
145
+ value: 0.9449650812915468
146
+ name: Manhattan Ap
147
+ - type: euclidean_accuracy
148
+ value: 0.9625117150890347
149
+ name: Euclidean Accuracy
150
+ - type: euclidean_accuracy_threshold
151
+ value: 20.998559951782227
152
+ name: Euclidean Accuracy Threshold
153
+ - type: euclidean_f1
154
+ value: 0.9233716475095786
155
+ name: Euclidean F1
156
+ - type: euclidean_f1_threshold
157
+ value: 20.998559951782227
158
+ name: Euclidean F1 Threshold
159
+ - type: euclidean_precision
160
+ value: 0.9601593625498008
161
+ name: Euclidean Precision
162
+ - type: euclidean_recall
163
+ value: 0.8892988929889298
164
+ name: Euclidean Recall
165
+ - type: euclidean_ap
166
+ value: 0.9460565635114587
167
+ name: Euclidean Ap
168
+ - type: max_accuracy
169
+ value: 0.9625117150890347
170
+ name: Max Accuracy
171
+ - type: max_accuracy_threshold
172
+ value: 464.1397399902344
173
+ name: Max Accuracy Threshold
174
+ - type: max_f1
175
+ value: 0.9233716475095786
176
+ name: Max F1
177
+ - type: max_f1_threshold
178
+ value: 464.1397399902344
179
+ name: Max F1 Threshold
180
+ - type: max_precision
181
+ value: 0.9601593625498008
182
+ name: Max Precision
183
+ - type: max_recall
184
+ value: 0.8966789667896679
185
+ name: Max Recall
186
+ - type: max_ap
187
+ value: 0.9552306119316933
188
+ name: Max Ap
189
  ---
190
 
191
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
 
 
 
192
 
193
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
194
 
195
  ## Model Details
196
 
197
  ### Model Description
198
+ - **Model Type:** Sentence Transformer
199
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
200
+ - **Maximum Sequence Length:** 512 tokens
201
+ - **Output Dimensionality:** 768 tokens
202
+ - **Similarity Function:** Cosine Similarity
203
+ <!-- - **Training Dataset:** Unknown -->
204
+ <!-- - **Language:** Unknown -->
205
+ <!-- - **License:** Unknown -->
206
 
207
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
210
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
211
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
212
 
213
+ ### Full Model Architecture
214
 
215
+ ```
216
+ SentenceTransformer(
217
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
218
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
219
+ )
220
+ ```
221
 
222
+ ## Usage
223
 
224
+ ### Direct Usage (Sentence Transformers)
225
 
226
+ First install the Sentence Transformers library:
227
 
228
+ ```bash
229
+ pip install -U sentence-transformers
230
+ ```
 
 
231
 
232
+ Then you can load this model and run inference.
233
+ ```python
234
+ from sentence_transformers import SentenceTransformer
235
 
236
+ # Download from the 🤗 Hub
237
+ model = SentenceTransformer("sentence_transformers_model_id")
238
+ # Run inference
239
+ sentences = [
240
+ '他にはないの?',
241
+ 'ジャック',
242
+ '長老',
243
+ ]
244
+ embeddings = model.encode(sentences)
245
+ print(embeddings.shape)
246
+ # [3, 768]
247
 
248
+ # Get the similarity scores for the embeddings
249
+ similarities = model.similarity(embeddings, embeddings)
250
+ print(similarities.shape)
251
+ # [3, 3]
252
+ ```
253
 
254
+ <!--
255
+ ### Direct Usage (Transformers)
256
 
257
+ <details><summary>Click to see the direct usage in Transformers</summary>
258
 
259
+ </details>
260
+ -->
 
 
 
 
 
261
 
262
+ <!--
263
+ ### Downstream Usage (Sentence Transformers)
264
 
265
+ You can finetune this model on your own dataset.
266
 
267
+ <details><summary>Click to expand</summary>
268
 
269
+ </details>
270
+ -->
271
 
272
+ <!--
273
+ ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
 
 
 
274
 
275
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
276
+ -->
277
 
278
  ## Evaluation
279
 
280
+ ### Metrics
281
+
282
+ #### Binary Classification
283
+ * Dataset: `custom-arc-semantics-data-jp`
284
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
285
+
286
+ | Metric | Value |
287
+ |:-----------------------------|:-----------|
288
+ | cosine_accuracy | 0.9616 |
289
+ | cosine_accuracy_threshold | 0.5471 |
290
+ | cosine_f1 | 0.9222 |
291
+ | cosine_f1_threshold | 0.5471 |
292
+ | cosine_precision | 0.9492 |
293
+ | cosine_recall | 0.8967 |
294
+ | cosine_ap | 0.945 |
295
+ | dot_accuracy | 0.9597 |
296
+ | dot_accuracy_threshold | 291.9345 |
297
+ | dot_f1 | 0.9184 |
298
+ | dot_f1_threshold | 291.9345 |
299
+ | dot_precision | 0.9453 |
300
+ | dot_recall | 0.893 |
301
+ | dot_ap | 0.9552 |
302
+ | manhattan_accuracy | 0.9625 |
303
+ | manhattan_accuracy_threshold | 464.1397 |
304
+ | manhattan_f1 | 0.9234 |
305
+ | manhattan_f1_threshold | 464.1397 |
306
+ | manhattan_precision | 0.9602 |
307
+ | manhattan_recall | 0.8893 |
308
+ | manhattan_ap | 0.945 |
309
+ | euclidean_accuracy | 0.9625 |
310
+ | euclidean_accuracy_threshold | 20.9986 |
311
+ | euclidean_f1 | 0.9234 |
312
+ | euclidean_f1_threshold | 20.9986 |
313
+ | euclidean_precision | 0.9602 |
314
+ | euclidean_recall | 0.8893 |
315
+ | euclidean_ap | 0.9461 |
316
+ | max_accuracy | 0.9625 |
317
+ | max_accuracy_threshold | 464.1397 |
318
+ | max_f1 | 0.9234 |
319
+ | max_f1_threshold | 464.1397 |
320
+ | max_precision | 0.9602 |
321
+ | max_recall | 0.8967 |
322
+ | **max_ap** | **0.9552** |
323
+
324
+ <!--
325
+ ## Bias, Risks and Limitations
326
+
327
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
328
+ -->
329
+
330
+ <!--
331
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
 
333
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
334
+ -->
335
 
336
+ ## Training Details
337
 
338
+ ### Training Dataset
339
+
340
+ #### Unnamed Dataset
341
+
342
+
343
+ * Size: 4,265 training samples
344
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
345
+ * Approximate statistics based on the first 1000 samples:
346
+ | | text1 | text2 | label |
347
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
348
+ | type | string | string | int |
349
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.26 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.02 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>0: ~75.80%</li><li>1: ~24.20%</li></ul> |
350
+ * Samples:
351
+ | text1 | text2 | label |
352
+ |:-----------------------|:-----------------------|:---------------|
353
+ | <code>なにが欲しい?</code> | <code>おはようございます</code> | <code>0</code> |
354
+ | <code>昨晩は暑かったから</code> | <code>なにが欲しい?</code> | <code>0</code> |
355
+ | <code>どっちがおすすめ?</code> | <code>くさい</code> | <code>0</code> |
356
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
357
+ ```json
358
+ {
359
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
360
+ }
361
+ ```
362
+
363
+ ### Evaluation Dataset
364
+
365
+ #### Unnamed Dataset
366
+
367
+
368
+ * Size: 1,067 evaluation samples
369
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
370
+ * Approximate statistics based on the first 1000 samples:
371
+ | | text1 | text2 | label |
372
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
373
+ | type | string | string | int |
374
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.24 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.96 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>0: ~74.30%</li><li>1: ~25.70%</li></ul> |
375
+ * Samples:
376
+ | text1 | text2 | label |
377
+ |:---------------------------------------|:-----------------------------------|:---------------|
378
+ | <code>村長</code> | <code>あやしい</code> | <code>0</code> |
379
+ | <code>物の見た目を変えられる魔法を使える人を知っている?</code> | <code>物体の形を変えられる魔法使いを知っている?</code> | <code>1</code> |
380
+ | <code>タイマツ</code> | <code>べつのはないの?</code> | <code>0</code> |
381
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
382
+ ```json
383
+ {
384
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
385
+ }
386
+ ```
387
+
388
+ ### Training Hyperparameters
389
+ #### Non-Default Hyperparameters
390
+
391
+ - `eval_strategy`: epoch
392
+ - `learning_rate`: 2e-05
393
+ - `num_train_epochs`: 1
394
+ - `warmup_ratio`: 0.4
395
+ - `fp16`: True
396
+ - `batch_sampler`: no_duplicates
397
+
398
+ #### All Hyperparameters
399
+ <details><summary>Click to expand</summary>
400
+
401
+ - `overwrite_output_dir`: False
402
+ - `do_predict`: False
403
+ - `eval_strategy`: epoch
404
+ - `prediction_loss_only`: True
405
+ - `per_device_train_batch_size`: 8
406
+ - `per_device_eval_batch_size`: 8
407
+ - `per_gpu_train_batch_size`: None
408
+ - `per_gpu_eval_batch_size`: None
409
+ - `gradient_accumulation_steps`: 1
410
+ - `eval_accumulation_steps`: None
411
+ - `torch_empty_cache_steps`: None
412
+ - `learning_rate`: 2e-05
413
+ - `weight_decay`: 0.0
414
+ - `adam_beta1`: 0.9
415
+ - `adam_beta2`: 0.999
416
+ - `adam_epsilon`: 1e-08
417
+ - `max_grad_norm`: 1.0
418
+ - `num_train_epochs`: 1
419
+ - `max_steps`: -1
420
+ - `lr_scheduler_type`: linear
421
+ - `lr_scheduler_kwargs`: {}
422
+ - `warmup_ratio`: 0.4
423
+ - `warmup_steps`: 0
424
+ - `log_level`: passive
425
+ - `log_level_replica`: warning
426
+ - `log_on_each_node`: True
427
+ - `logging_nan_inf_filter`: True
428
+ - `save_safetensors`: True
429
+ - `save_on_each_node`: False
430
+ - `save_only_model`: False
431
+ - `restore_callback_states_from_checkpoint`: False
432
+ - `no_cuda`: False
433
+ - `use_cpu`: False
434
+ - `use_mps_device`: False
435
+ - `seed`: 42
436
+ - `data_seed`: None
437
+ - `jit_mode_eval`: False
438
+ - `use_ipex`: False
439
+ - `bf16`: False
440
+ - `fp16`: True
441
+ - `fp16_opt_level`: O1
442
+ - `half_precision_backend`: auto
443
+ - `bf16_full_eval`: False
444
+ - `fp16_full_eval`: False
445
+ - `tf32`: None
446
+ - `local_rank`: 0
447
+ - `ddp_backend`: None
448
+ - `tpu_num_cores`: None
449
+ - `tpu_metrics_debug`: False
450
+ - `debug`: []
451
+ - `dataloader_drop_last`: False
452
+ - `dataloader_num_workers`: 0
453
+ - `dataloader_prefetch_factor`: None
454
+ - `past_index`: -1
455
+ - `disable_tqdm`: False
456
+ - `remove_unused_columns`: True
457
+ - `label_names`: None
458
+ - `load_best_model_at_end`: False
459
+ - `ignore_data_skip`: False
460
+ - `fsdp`: []
461
+ - `fsdp_min_num_params`: 0
462
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
463
+ - `fsdp_transformer_layer_cls_to_wrap`: None
464
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
465
+ - `deepspeed`: None
466
+ - `label_smoothing_factor`: 0.0
467
+ - `optim`: adamw_torch
468
+ - `optim_args`: None
469
+ - `adafactor`: False
470
+ - `group_by_length`: False
471
+ - `length_column_name`: length
472
+ - `ddp_find_unused_parameters`: None
473
+ - `ddp_bucket_cap_mb`: None
474
+ - `ddp_broadcast_buffers`: False
475
+ - `dataloader_pin_memory`: True
476
+ - `dataloader_persistent_workers`: False
477
+ - `skip_memory_metrics`: True
478
+ - `use_legacy_prediction_loop`: False
479
+ - `push_to_hub`: False
480
+ - `resume_from_checkpoint`: None
481
+ - `hub_model_id`: None
482
+ - `hub_strategy`: every_save
483
+ - `hub_private_repo`: False
484
+ - `hub_always_push`: False
485
+ - `gradient_checkpointing`: False
486
+ - `gradient_checkpointing_kwargs`: None
487
+ - `include_inputs_for_metrics`: False
488
+ - `eval_do_concat_batches`: True
489
+ - `fp16_backend`: auto
490
+ - `push_to_hub_model_id`: None
491
+ - `push_to_hub_organization`: None
492
+ - `mp_parameters`:
493
+ - `auto_find_batch_size`: False
494
+ - `full_determinism`: False
495
+ - `torchdynamo`: None
496
+ - `ray_scope`: last
497
+ - `ddp_timeout`: 1800
498
+ - `torch_compile`: False
499
+ - `torch_compile_backend`: None
500
+ - `torch_compile_mode`: None
501
+ - `dispatch_batches`: None
502
+ - `split_batches`: None
503
+ - `include_tokens_per_second`: False
504
+ - `include_num_input_tokens_seen`: False
505
+ - `neftune_noise_alpha`: None
506
+ - `optim_target_modules`: None
507
+ - `batch_eval_metrics`: False
508
+ - `eval_on_start`: False
509
+ - `eval_use_gather_object`: False
510
+ - `batch_sampler`: no_duplicates
511
+ - `multi_dataset_batch_sampler`: proportional
512
+
513
+ </details>
514
+
515
+ ### Training Logs
516
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
517
+ |:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
518
+ | 1.0 | 534 | 0.0799 | 0.0400 | 0.9552 |
519
+
520
+
521
+ ### Framework Versions
522
+ - Python: 3.10.14
523
+ - Sentence Transformers: 3.1.1
524
+ - Transformers: 4.44.2
525
+ - PyTorch: 2.4.1+cu121
526
+ - Accelerate: 0.34.2
527
+ - Datasets: 2.20.0
528
+ - Tokenizers: 0.19.1
529
+
530
+ ## Citation
531
+
532
+ ### BibTeX
533
+
534
+ #### Sentence Transformers
535
+ ```bibtex
536
+ @inproceedings{reimers-2019-sentence-bert,
537
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
538
+ author = "Reimers, Nils and Gurevych, Iryna",
539
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
540
+ month = "11",
541
+ year = "2019",
542
+ publisher = "Association for Computational Linguistics",
543
+ url = "https://arxiv.org/abs/1908.10084",
544
+ }
545
+ ```
546
+
547
+ <!--
548
+ ## Glossary
549
+
550
+ *Clearly define terms in order to be accessible across audiences.*
551
+ -->
552
+
553
+ <!--
554
+ ## Model Card Authors
555
+
556
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
557
+ -->
558
+
559
+ <!--
560
  ## Model Card Contact
561
 
562
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
563
+ -->
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4e58e1993c2cc78b0d054932cfbef924f6ac6130b0db83c95919504da129fbbb
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aae0b6ad5037f334c3bcd004f08b177103224beb1e729fccd69cd3224b3c7dab
3
  size 442491744
runs/Sep19_17-55-41_default/events.out.tfevents.1726768542.default.1888.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:331b2f5ba2cf1f8f3da7e2b7adca5717cb195bbcdbe474857fc63e0144efd42e
3
+ size 4278
runs/Sep19_17-58-18_default/events.out.tfevents.1726768703.default.2062.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e5d4fb9bc0a93a9bc03e03ea42ad56d062090bb7bb03b01d01570f97d354cfe
3
+ size 4278
runs/Sep19_19-27-06_default/events.out.tfevents.1726774029.default.2586.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f09768e0f0661497ee3678462df264bfbfc40b36167fffdc5bc69dfe5bbc09
3
+ size 8199