Add new SentenceTransformer model.
Browse files- README.md +108 -108
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -45,34 +45,34 @@ tags:
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
-
- dataset_size:
|
49 |
- loss:MultipleNegativesRankingLoss
|
50 |
widget:
|
51 |
-
- source_sentence:
|
52 |
sentences:
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
- source_sentence:
|
57 |
sentences:
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
-
- source_sentence:
|
62 |
sentences:
|
63 |
-
-
|
64 |
-
-
|
65 |
-
-
|
66 |
-
- source_sentence:
|
67 |
sentences:
|
68 |
-
-
|
69 |
-
-
|
70 |
-
-
|
71 |
-
- source_sentence:
|
72 |
sentences:
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
78 |
results:
|
@@ -84,109 +84,109 @@ model-index:
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
-
value: 0.
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
-
value: 0.
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
value: 1.0
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
-
value: 0.
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
-
value: 0
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
-
value: 0.
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
-
value:
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
-
value: 0.
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
-
value:
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
value: 1.0
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
-
value: 0.
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
-
value: 0
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
-
value: 0.
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
-
value:
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
-
value: 0.
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
-
value:
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
value: 1.0
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
-
value: 0.
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
-
value: 0
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
-
value: 0.
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
-
value:
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
-
value: 0.
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
-
value:
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
value: 1.0
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
-
value: 0.
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
-
value: 0
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
-
value: 0.
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
-
value:
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
-
value: 0.
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
-
value:
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
value: 1.0
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
-
value: 0.
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
-
value: 0
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
@@ -239,9 +239,9 @@ from sentence_transformers import SentenceTransformer
|
|
239 |
model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc")
|
240 |
# Run inference
|
241 |
sentences = [
|
242 |
-
'
|
243 |
-
'
|
244 |
-
'
|
245 |
]
|
246 |
embeddings = model.encode(sentences)
|
247 |
print(embeddings.shape)
|
@@ -287,40 +287,40 @@ You can finetune this model on your own dataset.
|
|
287 |
|
288 |
| Metric | Value |
|
289 |
|:-----------------------------|:---------|
|
290 |
-
| cosine_accuracy | 0.
|
291 |
-
| cosine_accuracy_threshold | 0.
|
292 |
-
| cosine_f1 | 0.
|
293 |
-
| cosine_f1_threshold | 0.
|
294 |
| cosine_precision | 1.0 |
|
295 |
-
| cosine_recall | 0.
|
296 |
| cosine_ap | 1.0 |
|
297 |
-
| dot_accuracy | 0.
|
298 |
-
| dot_accuracy_threshold |
|
299 |
-
| dot_f1 | 0.
|
300 |
-
| dot_f1_threshold |
|
301 |
| dot_precision | 1.0 |
|
302 |
-
| dot_recall | 0.
|
303 |
| dot_ap | 1.0 |
|
304 |
-
| manhattan_accuracy | 0.
|
305 |
-
| manhattan_accuracy_threshold |
|
306 |
-
| manhattan_f1 | 0.
|
307 |
-
| manhattan_f1_threshold |
|
308 |
| manhattan_precision | 1.0 |
|
309 |
-
| manhattan_recall | 0.
|
310 |
| manhattan_ap | 1.0 |
|
311 |
-
| euclidean_accuracy | 0.
|
312 |
-
| euclidean_accuracy_threshold |
|
313 |
-
| euclidean_f1 | 0.
|
314 |
-
| euclidean_f1_threshold |
|
315 |
| euclidean_precision | 1.0 |
|
316 |
-
| euclidean_recall | 0.
|
317 |
| euclidean_ap | 1.0 |
|
318 |
-
| max_accuracy | 0.
|
319 |
-
| max_accuracy_threshold |
|
320 |
-
| max_f1 | 0.
|
321 |
-
| max_f1_threshold |
|
322 |
| max_precision | 1.0 |
|
323 |
-
| max_recall | 0.
|
324 |
| **max_ap** | **1.0** |
|
325 |
|
326 |
<!--
|
@@ -342,19 +342,19 @@ You can finetune this model on your own dataset.
|
|
342 |
#### Unnamed Dataset
|
343 |
|
344 |
|
345 |
-
* Size:
|
346 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
347 |
* Approximate statistics based on the first 1000 samples:
|
348 |
| | text1 | text2 | label |
|
349 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
350 |
| type | string | string | int |
|
351 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 8.
|
352 |
* Samples:
|
353 |
-
| text1
|
354 |
-
|
355 |
-
| <code
|
356 |
-
| <code
|
357 |
-
| <code
|
358 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
359 |
```json
|
360 |
{
|
@@ -368,19 +368,19 @@ You can finetune this model on your own dataset.
|
|
368 |
#### Unnamed Dataset
|
369 |
|
370 |
|
371 |
-
* Size:
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
* Approximate statistics based on the first 1000 samples:
|
374 |
| | text1 | text2 | label |
|
375 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
376 |
| type | string | string | int |
|
377 |
-
| details | <ul><li>min:
|
378 |
* Samples:
|
379 |
-
| text1
|
380 |
-
|
381 |
-
| <code
|
382 |
-
| <code
|
383 |
-
| <code
|
384 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
385 |
```json
|
386 |
{
|
@@ -519,27 +519,27 @@ You can finetune this model on your own dataset.
|
|
519 |
### Training Logs
|
520 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
521 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
522 |
-
| None | 0 | - | - | 1.
|
523 |
-
| 1.0 |
|
524 |
-
| 2.0 |
|
525 |
-
| 3.0 |
|
526 |
-
| 4.0 |
|
527 |
-
| 5.0 |
|
528 |
-
| 6.0 |
|
529 |
-
| 7.0 |
|
530 |
-
| 8.0 |
|
531 |
-
| 9.0 |
|
532 |
-
| 10.0 |
|
533 |
-
| 11.0 |
|
534 |
-
| 12.0 |
|
535 |
-
| 13.0 |
|
536 |
|
537 |
|
538 |
### Framework Versions
|
539 |
- Python: 3.10.14
|
540 |
- Sentence Transformers: 3.0.1
|
541 |
- Transformers: 4.44.2
|
542 |
-
- PyTorch: 2.4.
|
543 |
- Accelerate: 0.34.0
|
544 |
- Datasets: 2.20.0
|
545 |
- Tokenizers: 0.19.1
|
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
+
- dataset_size:228
|
49 |
- loss:MultipleNegativesRankingLoss
|
50 |
widget:
|
51 |
+
- source_sentence: 家の外を探そう
|
52 |
sentences:
|
53 |
+
- ベットを調べよう
|
54 |
+
- 何を作ったの?
|
55 |
+
- 外を見てみよう
|
56 |
+
- source_sentence: 物の姿を変える魔法が使える村人を知っている?
|
57 |
sentences:
|
58 |
+
- 中を見てみよう
|
59 |
+
- ベッドにある?
|
60 |
+
- 物体の形を変えられる魔法使いを知っている?
|
61 |
+
- source_sentence: ぬいぐるみが花
|
62 |
sentences:
|
63 |
+
- リリアンはどんな呪文が使えるの?
|
64 |
+
- ぬいぐるみ
|
65 |
+
- 花がぬいぐるみに変えられている
|
66 |
+
- source_sentence: ベッドにスカーフはある?
|
67 |
sentences:
|
68 |
+
- 井戸へ行ったことある?
|
69 |
+
- どっちも要らない
|
70 |
+
- スカーフはベッドにある?
|
71 |
+
- source_sentence: キャンドル頂戴
|
72 |
sentences:
|
73 |
+
- 祭壇の些細な違和感ってなに?
|
74 |
+
- やっぱり、キャンドルがいい
|
75 |
+
- テーブルを調べよう
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
|
78 |
results:
|
|
|
84 |
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
+
value: 0.9827586206896551
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
+
value: 0.2341834306716919
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
+
value: 0.9913043478260869
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
+
value: 0.2341834306716919
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
value: 1.0
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
+
value: 0.9827586206896551
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
+
value: 1.0
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
+
value: 0.9827586206896551
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
+
value: 134.29324340820312
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
+
value: 0.9913043478260869
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
+
value: 134.29324340820312
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
value: 1.0
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
+
value: 0.9827586206896551
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
+
value: 1.0
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
+
value: 0.9827586206896551
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
+
value: 644.1650390625
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
+
value: 0.9913043478260869
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
+
value: 644.1650390625
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
value: 1.0
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
+
value: 0.9827586206896551
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
+
value: 1.0
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
+
value: 0.9827586206896551
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
+
value: 29.542858123779297
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
+
value: 0.9913043478260869
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
+
value: 29.542858123779297
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
value: 1.0
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
+
value: 0.9827586206896551
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
+
value: 1.0
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
+
value: 0.9827586206896551
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
+
value: 644.1650390625
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
+
value: 0.9913043478260869
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
+
value: 644.1650390625
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
value: 1.0
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
+
value: 0.9827586206896551
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
+
value: 1.0
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
|
|
239 |
model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc")
|
240 |
# Run inference
|
241 |
sentences = [
|
242 |
+
'キャンドル頂戴',
|
243 |
+
'やっぱり、キャンドルがいい',
|
244 |
+
'テーブルを調べよう',
|
245 |
]
|
246 |
embeddings = model.encode(sentences)
|
247 |
print(embeddings.shape)
|
|
|
287 |
|
288 |
| Metric | Value |
|
289 |
|:-----------------------------|:---------|
|
290 |
+
| cosine_accuracy | 0.9828 |
|
291 |
+
| cosine_accuracy_threshold | 0.2342 |
|
292 |
+
| cosine_f1 | 0.9913 |
|
293 |
+
| cosine_f1_threshold | 0.2342 |
|
294 |
| cosine_precision | 1.0 |
|
295 |
+
| cosine_recall | 0.9828 |
|
296 |
| cosine_ap | 1.0 |
|
297 |
+
| dot_accuracy | 0.9828 |
|
298 |
+
| dot_accuracy_threshold | 134.2932 |
|
299 |
+
| dot_f1 | 0.9913 |
|
300 |
+
| dot_f1_threshold | 134.2932 |
|
301 |
| dot_precision | 1.0 |
|
302 |
+
| dot_recall | 0.9828 |
|
303 |
| dot_ap | 1.0 |
|
304 |
+
| manhattan_accuracy | 0.9828 |
|
305 |
+
| manhattan_accuracy_threshold | 644.165 |
|
306 |
+
| manhattan_f1 | 0.9913 |
|
307 |
+
| manhattan_f1_threshold | 644.165 |
|
308 |
| manhattan_precision | 1.0 |
|
309 |
+
| manhattan_recall | 0.9828 |
|
310 |
| manhattan_ap | 1.0 |
|
311 |
+
| euclidean_accuracy | 0.9828 |
|
312 |
+
| euclidean_accuracy_threshold | 29.5429 |
|
313 |
+
| euclidean_f1 | 0.9913 |
|
314 |
+
| euclidean_f1_threshold | 29.5429 |
|
315 |
| euclidean_precision | 1.0 |
|
316 |
+
| euclidean_recall | 0.9828 |
|
317 |
| euclidean_ap | 1.0 |
|
318 |
+
| max_accuracy | 0.9828 |
|
319 |
+
| max_accuracy_threshold | 644.165 |
|
320 |
+
| max_f1 | 0.9913 |
|
321 |
+
| max_f1_threshold | 644.165 |
|
322 |
| max_precision | 1.0 |
|
323 |
+
| max_recall | 0.9828 |
|
324 |
| **max_ap** | **1.0** |
|
325 |
|
326 |
<!--
|
|
|
342 |
#### Unnamed Dataset
|
343 |
|
344 |
|
345 |
+
* Size: 228 training samples
|
346 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
347 |
* Approximate statistics based on the first 1000 samples:
|
348 |
| | text1 | text2 | label |
|
349 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
350 |
| type | string | string | int |
|
351 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.28 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.63 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
352 |
* Samples:
|
353 |
+
| text1 | text2 | label |
|
354 |
+
|:----------------------------|:------------------------|:---------------|
|
355 |
+
| <code>キャンドルを用意して</code> | <code>ロウソク</code> | <code>1</code> |
|
356 |
+
| <code>なんで話せるの?</code> | <code>なんでしゃべれるの?</code> | <code>1</code> |
|
357 |
+
| <code>それは物の見た目を変える魔法</code> | <code>物の見た目を変える</code> | <code>1</code> |
|
358 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
359 |
```json
|
360 |
{
|
|
|
368 |
#### Unnamed Dataset
|
369 |
|
370 |
|
371 |
+
* Size: 58 evaluation samples
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
* Approximate statistics based on the first 1000 samples:
|
374 |
| | text1 | text2 | label |
|
375 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
376 |
| type | string | string | int |
|
377 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.33 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.38 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
378 |
* Samples:
|
379 |
+
| text1 | text2 | label |
|
380 |
+
|:----------------------------|:----------------------------|:---------------|
|
381 |
+
| <code>雲より高くってどこ?</code> | <code>雲より高くってなに?</code> | <code>1</code> |
|
382 |
+
| <code>気にスカーフがひっかかってる</code> | <code>キにスカーフが引っかかってる</code> | <code>1</code> |
|
383 |
+
| <code>夕飯が辛かったから</code> | <code>夕飯に辛いスープを飲んだから</code> | <code>1</code> |
|
384 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
385 |
```json
|
386 |
{
|
|
|
519 |
### Training Logs
|
520 |
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|
521 |
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|
|
522 |
+
| None | 0 | - | - | 1.0 |
|
523 |
+
| 1.0 | 29 | 0.6181 | 0.3774 | 1.0 |
|
524 |
+
| 2.0 | 58 | 0.2538 | 0.3356 | 1.0 |
|
525 |
+
| 3.0 | 87 | 0.063 | 0.3885 | 1.0 |
|
526 |
+
| 4.0 | 116 | 0.015 | 0.4536 | 1.0 |
|
527 |
+
| 5.0 | 145 | 0.0061 | 0.4475 | 1.0 |
|
528 |
+
| 6.0 | 174 | 0.002 | 0.4805 | 1.0 |
|
529 |
+
| 7.0 | 203 | 0.0015 | 0.4826 | 1.0 |
|
530 |
+
| 8.0 | 232 | 0.0012 | 0.4831 | 1.0 |
|
531 |
+
| 9.0 | 261 | 0.0008 | 0.4848 | 1.0 |
|
532 |
+
| 10.0 | 290 | 0.0006 | 0.4862 | 1.0 |
|
533 |
+
| 11.0 | 319 | 0.0006 | 0.4883 | 1.0 |
|
534 |
+
| 12.0 | 348 | 0.0007 | 0.4903 | 1.0 |
|
535 |
+
| 13.0 | 377 | 0.0006 | 0.4912 | 1.0 |
|
536 |
|
537 |
|
538 |
### Framework Versions
|
539 |
- Python: 3.10.14
|
540 |
- Sentence Transformers: 3.0.1
|
541 |
- Transformers: 4.44.2
|
542 |
+
- PyTorch: 2.4.1+cu121
|
543 |
- Accelerate: 0.34.0
|
544 |
- Datasets: 2.20.0
|
545 |
- Tokenizers: 0.19.1
|
config_sentence_transformers.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
"transformers": "4.44.2",
|
5 |
-
"pytorch": "2.4.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 442491744
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:039721c1fad0c0fa6d3c342ca79d7eb552b0005e9c34c0bcc96c0455e340a82d
|
3 |
size 442491744
|