---
base_model: colorfulscoop/sbert-base-ja
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7464
- loss:CosineSimilarityLoss
widget:
- source_sentence: なにか思い出せることは?
sentences:
- なんて言った?
- なにが欲しい?
- いつ失くしたの?
- source_sentence: 木にスカーフがひっかかってる?
sentences:
- 物の姿を変えられる魔法
- 木にスカーフがひっかかってる?
- あの木の上のやつ、スカーフ?
- source_sentence: どんなスカーフ?
sentences:
- お気に入りの食べ物は?
- くさい
- もしもし
- source_sentence: どうやったら猫が話せる?
sentences:
- どっちがいいと思う?
- ワゴンにスカーフはあった?
- 井戸へ行ったことある?
- source_sentence: なにか思い出せることは?
sentences:
- 村人はどんな呪文が使えるの?
- 町って?
- キミならどっちがいい?
model-index:
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: custom arc semantics data jp
type: custom-arc-semantics-data-jp
metrics:
- type: cosine_accuracy
value: 0.9705409748259239
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.5118279457092285
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9102773246329527
name: Cosine F1
- type: cosine_f1_threshold
value: 0.45031607151031494
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8857142857142857
name: Cosine Precision
- type: cosine_recall
value: 0.9362416107382551
name: Cosine Recall
- type: cosine_ap
value: 0.9236294738598163
name: Cosine Ap
- type: dot_accuracy
value: 0.9694697375468666
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 251.2455596923828
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9060955518945634
name: Dot F1
- type: dot_f1_threshold
value: 246.36648559570312
name: Dot F1 Threshold
- type: dot_precision
value: 0.889967637540453
name: Dot Precision
- type: dot_recall
value: 0.9228187919463087
name: Dot Recall
- type: dot_ap
value: 0.9196731890884118
name: Dot Ap
- type: manhattan_accuracy
value: 0.9716122121049813
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 514.571533203125
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9132569558101473
name: Manhattan F1
- type: manhattan_f1_threshold
value: 514.571533203125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8913738019169329
name: Manhattan Precision
- type: manhattan_recall
value: 0.9362416107382551
name: Manhattan Recall
- type: manhattan_ap
value: 0.9255015709844487
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9721478307445099
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 23.195274353027344
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9147540983606558
name: Euclidean F1
- type: euclidean_f1_threshold
value: 23.195274353027344
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8942307692307693
name: Euclidean Precision
- type: euclidean_recall
value: 0.9362416107382551
name: Euclidean Recall
- type: euclidean_ap
value: 0.9259440018381992
name: Euclidean Ap
- type: max_accuracy
value: 0.9721478307445099
name: Max Accuracy
- type: max_accuracy_threshold
value: 514.571533203125
name: Max Accuracy Threshold
- type: max_f1
value: 0.9147540983606558
name: Max F1
- type: max_f1_threshold
value: 514.571533203125
name: Max F1 Threshold
- type: max_precision
value: 0.8942307692307693
name: Max Precision
- type: max_recall
value: 0.9362416107382551
name: Max Recall
- type: max_ap
value: 0.9259440018381992
name: Max Ap
---
# SentenceTransformer based on colorfulscoop/sbert-base-ja
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'なにか思い出せることは?',
'村人はどんな呪文が使えるの?',
'キミならどっちがいい?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `custom-arc-semantics-data-jp`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9705 |
| cosine_accuracy_threshold | 0.5118 |
| cosine_f1 | 0.9103 |
| cosine_f1_threshold | 0.4503 |
| cosine_precision | 0.8857 |
| cosine_recall | 0.9362 |
| cosine_ap | 0.9236 |
| dot_accuracy | 0.9695 |
| dot_accuracy_threshold | 251.2456 |
| dot_f1 | 0.9061 |
| dot_f1_threshold | 246.3665 |
| dot_precision | 0.89 |
| dot_recall | 0.9228 |
| dot_ap | 0.9197 |
| manhattan_accuracy | 0.9716 |
| manhattan_accuracy_threshold | 514.5715 |
| manhattan_f1 | 0.9133 |
| manhattan_f1_threshold | 514.5715 |
| manhattan_precision | 0.8914 |
| manhattan_recall | 0.9362 |
| manhattan_ap | 0.9255 |
| euclidean_accuracy | 0.9721 |
| euclidean_accuracy_threshold | 23.1953 |
| euclidean_f1 | 0.9148 |
| euclidean_f1_threshold | 23.1953 |
| euclidean_precision | 0.8942 |
| euclidean_recall | 0.9362 |
| euclidean_ap | 0.9259 |
| max_accuracy | 0.9721 |
| max_accuracy_threshold | 514.5715 |
| max_f1 | 0.9148 |
| max_f1_threshold | 514.5715 |
| max_precision | 0.8942 |
| max_recall | 0.9362 |
| **max_ap** | **0.9259** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 7,464 training samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
昨日夕飯にチキンヌードル食べた?
| 何か企んでる?
| 0
|
| どっちも欲しくない
| お気に入りの食べ物は?
| 0
|
| 見た目を変える魔法
| 物の姿を変えられる魔法
| 1
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,867 evaluation samples
* Columns: text1
, text2
, and label
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | 例えば?
| どうも
| 0
|
| 何を作ったの?
| 君は何でここにいるの?
| 0
|
| 昨日夕飯にビーフシチュー食べた?
| 屋根裏って?
| 0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.4
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters