LeoChiuu commited on
Commit
5e18f8a
1 Parent(s): 20a1146

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,201 +1,362 @@
1
- ---
2
- datasets: custom-data
3
- language: en
4
- license: apache-2.0
5
- model_name: LeoChiuu/sbert-base-ja
6
- ---
7
-
8
- # Model Card for LeoChiuu/sbert-base-ja
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
-
13
-
14
- ## Model Details
15
-
16
- ### Model Description
17
-
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- Binary classification of sentences
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** en
27
- - **License:** apache-2.0
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** https://github.com/huggingface/huggingface_hub
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: colorfulscoop/sbert-base-ja
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - accuracy
8
+ pipeline_tag: sentence-similarity
9
+ tags:
10
+ - sentence-transformers
11
+ - sentence-similarity
12
+ - feature-extraction
13
+ - generated_from_trainer
14
+ - dataset_size:124
15
+ - loss:SoftmaxLoss
16
+ widget:
17
+ - source_sentence: どっちをさがせばいい?
18
+ sentences:
19
+ - はじめにどっちをさがせばいい?
20
+ - 巻き割をした?
21
+ - 晩ご飯のとき
22
+ - source_sentence: 夕飯はチキンヌードルだった?
23
+ sentences:
24
+ - 花壇の中にスカーフはある?
25
+ - 昨日作ったのはチキンヌードル?
26
+ - 外を見てみよう
27
+ - source_sentence: あの木の上にあるやつはなに?
28
+ sentences:
29
+ - やっぱり、キャンドルがいい
30
+ - じぶん
31
+ - あの木に引っかかってるやつ
32
+ - source_sentence: ' 君は猫なの?'
33
+ sentences:
34
+ - 棚からトマトがなくなってたから
35
+ - キミって猫?
36
+ - 家の中を探してみよう
37
+ - source_sentence: チキンヌードル作った?
38
+ sentences:
39
+ - カーテンが動いていたから
40
+ - 井戸を使った
41
+ - 昨日夕飯にチキンヌードル食べた?
42
+ model-index:
43
+ - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
44
+ results:
45
+ - task:
46
+ type: label-accuracy
47
+ name: Label Accuracy
48
+ dataset:
49
+ name: val
50
+ type: val
51
+ metrics:
52
+ - type: accuracy
53
+ value: 0.8387096774193549
54
+ name: Accuracy
55
+ ---
56
+
57
+ # SentenceTransformer based on colorfulscoop/sbert-base-ja
58
+
59
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
60
+
61
+ ## Model Details
62
+
63
+ ### Model Description
64
+ - **Model Type:** Sentence Transformer
65
+ - **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
66
+ - **Maximum Sequence Length:** 512 tokens
67
+ - **Output Dimensionality:** 768 tokens
68
+ - **Similarity Function:** Cosine Similarity
69
+ <!-- - **Training Dataset:** Unknown -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
76
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
77
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
78
+
79
+ ### Full Model Architecture
80
+
81
+ ```
82
+ SentenceTransformer(
83
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
84
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
85
+ )
86
+ ```
87
+
88
+ ## Usage
89
+
90
+ ### Direct Usage (Sentence Transformers)
91
+
92
+ First install the Sentence Transformers library:
93
+
94
+ ```bash
95
+ pip install -U sentence-transformers
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+ ```python
100
+ from sentence_transformers import SentenceTransformer
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SentenceTransformer("LeoChiuu/sbert-base-ja")
104
+ # Run inference
105
+ sentences = [
106
+ 'チキンヌードル作った?',
107
+ '昨日夕飯にチキンヌードル食べた?',
108
+ '井戸を使った',
109
+ ]
110
+ embeddings = model.encode(sentences)
111
+ print(embeddings.shape)
112
+ # [3, 768]
113
+
114
+ # Get the similarity scores for the embeddings
115
+ similarities = model.similarity(embeddings, embeddings)
116
+ print(similarities.shape)
117
+ # [3, 3]
118
+ ```
119
+
120
+ <!--
121
+ ### Direct Usage (Transformers)
122
+
123
+ <details><summary>Click to see the direct usage in Transformers</summary>
124
+
125
+ </details>
126
+ -->
127
+
128
+ <!--
129
+ ### Downstream Usage (Sentence Transformers)
130
+
131
+ You can finetune this model on your own dataset.
132
+
133
+ <details><summary>Click to expand</summary>
134
+
135
+ </details>
136
+ -->
137
+
138
+ <!--
139
+ ### Out-of-Scope Use
140
+
141
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
142
+ -->
143
+
144
+ ## Evaluation
145
+
146
+ ### Metrics
147
+
148
+ #### Label Accuracy
149
+ * Dataset: `val`
150
+ * Evaluated with [<code>LabelAccuracyEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.LabelAccuracyEvaluator)
151
+
152
+ | Metric | Value |
153
+ |:-------------|:-----------|
154
+ | **accuracy** | **0.8387** |
155
+
156
+ <!--
157
+ ## Bias, Risks and Limitations
158
+
159
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
160
+ -->
161
+
162
+ <!--
163
+ ### Recommendations
164
+
165
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
166
+ -->
167
+
168
+ ## Training Details
169
+
170
+ ### Training Dataset
171
+
172
+ #### Unnamed Dataset
173
+
174
+
175
+ * Size: 124 training samples
176
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
177
+ * Approximate statistics based on the first 1000 samples:
178
+ | | sentence_0 | sentence_1 | label |
179
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
180
+ | type | string | string | int |
181
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.59 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.58 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
182
+ * Samples:
183
+ | sentence_0 | sentence_1 | label |
184
+ |:-------------------------|:--------------------------|:---------------|
185
+ | <code>ビーフシチュー食べた?</code> | <code>ビーフシチュー作った?</code> | <code>1</code> |
186
+ | <code>夜ごはんの時</code> | <code>晩ご飯のとき</code> | <code>1</code> |
187
+ | <code>タイマツが欲しい</code> | <code>やっぱり、タイマツがいい</code> | <code>1</code> |
188
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
189
+
190
+ ### Training Hyperparameters
191
+ #### Non-Default Hyperparameters
192
+
193
+ - `eval_strategy`: steps
194
+ - `num_train_epochs`: 1
195
+ - `multi_dataset_batch_sampler`: round_robin
196
+
197
+ #### All Hyperparameters
198
+ <details><summary>Click to expand</summary>
199
+
200
+ - `overwrite_output_dir`: False
201
+ - `do_predict`: False
202
+ - `eval_strategy`: steps
203
+ - `prediction_loss_only`: True
204
+ - `per_device_train_batch_size`: 8
205
+ - `per_device_eval_batch_size`: 8
206
+ - `per_gpu_train_batch_size`: None
207
+ - `per_gpu_eval_batch_size`: None
208
+ - `gradient_accumulation_steps`: 1
209
+ - `eval_accumulation_steps`: None
210
+ - `torch_empty_cache_steps`: None
211
+ - `learning_rate`: 5e-05
212
+ - `weight_decay`: 0.0
213
+ - `adam_beta1`: 0.9
214
+ - `adam_beta2`: 0.999
215
+ - `adam_epsilon`: 1e-08
216
+ - `max_grad_norm`: 1
217
+ - `num_train_epochs`: 1
218
+ - `max_steps`: -1
219
+ - `lr_scheduler_type`: linear
220
+ - `lr_scheduler_kwargs`: {}
221
+ - `warmup_ratio`: 0.0
222
+ - `warmup_steps`: 0
223
+ - `log_level`: passive
224
+ - `log_level_replica`: warning
225
+ - `log_on_each_node`: True
226
+ - `logging_nan_inf_filter`: True
227
+ - `save_safetensors`: True
228
+ - `save_on_each_node`: False
229
+ - `save_only_model`: False
230
+ - `restore_callback_states_from_checkpoint`: False
231
+ - `no_cuda`: False
232
+ - `use_cpu`: False
233
+ - `use_mps_device`: False
234
+ - `seed`: 42
235
+ - `data_seed`: None
236
+ - `jit_mode_eval`: False
237
+ - `use_ipex`: False
238
+ - `bf16`: False
239
+ - `fp16`: False
240
+ - `fp16_opt_level`: O1
241
+ - `half_precision_backend`: auto
242
+ - `bf16_full_eval`: False
243
+ - `fp16_full_eval`: False
244
+ - `tf32`: None
245
+ - `local_rank`: 0
246
+ - `ddp_backend`: None
247
+ - `tpu_num_cores`: None
248
+ - `tpu_metrics_debug`: False
249
+ - `debug`: []
250
+ - `dataloader_drop_last`: False
251
+ - `dataloader_num_workers`: 0
252
+ - `dataloader_prefetch_factor`: None
253
+ - `past_index`: -1
254
+ - `disable_tqdm`: False
255
+ - `remove_unused_columns`: True
256
+ - `label_names`: None
257
+ - `load_best_model_at_end`: False
258
+ - `ignore_data_skip`: False
259
+ - `fsdp`: []
260
+ - `fsdp_min_num_params`: 0
261
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
262
+ - `fsdp_transformer_layer_cls_to_wrap`: None
263
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
264
+ - `deepspeed`: None
265
+ - `label_smoothing_factor`: 0.0
266
+ - `optim`: adamw_torch
267
+ - `optim_args`: None
268
+ - `adafactor`: False
269
+ - `group_by_length`: False
270
+ - `length_column_name`: length
271
+ - `ddp_find_unused_parameters`: None
272
+ - `ddp_bucket_cap_mb`: None
273
+ - `ddp_broadcast_buffers`: False
274
+ - `dataloader_pin_memory`: True
275
+ - `dataloader_persistent_workers`: False
276
+ - `skip_memory_metrics`: True
277
+ - `use_legacy_prediction_loop`: False
278
+ - `push_to_hub`: False
279
+ - `resume_from_checkpoint`: None
280
+ - `hub_model_id`: None
281
+ - `hub_strategy`: every_save
282
+ - `hub_private_repo`: False
283
+ - `hub_always_push`: False
284
+ - `gradient_checkpointing`: False
285
+ - `gradient_checkpointing_kwargs`: None
286
+ - `include_inputs_for_metrics`: False
287
+ - `eval_do_concat_batches`: True
288
+ - `fp16_backend`: auto
289
+ - `push_to_hub_model_id`: None
290
+ - `push_to_hub_organization`: None
291
+ - `mp_parameters`:
292
+ - `auto_find_batch_size`: False
293
+ - `full_determinism`: False
294
+ - `torchdynamo`: None
295
+ - `ray_scope`: last
296
+ - `ddp_timeout`: 1800
297
+ - `torch_compile`: False
298
+ - `torch_compile_backend`: None
299
+ - `torch_compile_mode`: None
300
+ - `dispatch_batches`: None
301
+ - `split_batches`: None
302
+ - `include_tokens_per_second`: False
303
+ - `include_num_input_tokens_seen`: False
304
+ - `neftune_noise_alpha`: None
305
+ - `optim_target_modules`: None
306
+ - `batch_eval_metrics`: False
307
+ - `eval_on_start`: False
308
+ - `eval_use_gather_object`: False
309
+ - `batch_sampler`: batch_sampler
310
+ - `multi_dataset_batch_sampler`: round_robin
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | val_accuracy |
316
+ |:-----:|:----:|:------------:|
317
+ | 1.0 | 16 | 0.8387 |
318
+
319
+
320
+ ### Framework Versions
321
+ - Python: 3.10.14
322
+ - Sentence Transformers: 3.0.1
323
+ - Transformers: 4.44.2
324
+ - PyTorch: 2.4.0+cu121
325
+ - Accelerate: 0.34.0
326
+ - Datasets: 2.20.0
327
+ - Tokenizers: 0.19.1
328
+
329
+ ## Citation
330
+
331
+ ### BibTeX
332
+
333
+ #### Sentence Transformers and SoftmaxLoss
334
+ ```bibtex
335
+ @inproceedings{reimers-2019-sentence-bert,
336
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
337
+ author = "Reimers, Nils and Gurevych, Iryna",
338
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
339
+ month = "11",
340
+ year = "2019",
341
+ publisher = "Association for Computational Linguistics",
342
+ url = "https://arxiv.org/abs/1908.10084",
343
+ }
344
+ ```
345
+
346
+ <!--
347
+ ## Glossary
348
+
349
+ *Clearly define terms in order to be accessible across audiences.*
350
+ -->
351
+
352
+ <!--
353
+ ## Model Card Authors
354
+
355
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
356
+ -->
357
+
358
+ <!--
359
+ ## Model Card Contact
360
+
361
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
362
+ -->
added_tokens.json CHANGED
@@ -1,3 +1,3 @@
1
- {
2
- "[PAD]": 32000
3
- }
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json CHANGED
@@ -1,33 +1,33 @@
1
- {
2
- "_name_or_path": "colorfulscoop/sbert-base-ja",
3
- "architectures": [
4
- "BertModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 2,
8
- "classifier_dropout": null,
9
- "cls_token_id": 2,
10
- "eos_token_id": 3,
11
- "gradient_checkpointing": false,
12
- "hidden_act": "gelu",
13
- "hidden_dropout_prob": 0.1,
14
- "hidden_size": 768,
15
- "initializer_range": 0.02,
16
- "intermediate_size": 3072,
17
- "layer_norm_eps": 1e-12,
18
- "mask_token_id": 4,
19
- "max_position_embeddings": 512,
20
- "model_type": "bert",
21
- "num_attention_heads": 12,
22
- "num_hidden_layers": 12,
23
- "pad_token_id": 0,
24
- "position_embedding_type": "absolute",
25
- "sep_token_id": 3,
26
- "tokenizer_class": "DebertaV2Tokenizer",
27
- "torch_dtype": "float32",
28
- "transformers_version": "4.44.1",
29
- "type_vocab_size": 2,
30
- "unk_token_id": 1,
31
- "use_cache": true,
32
- "vocab_size": 32000
33
- }
 
1
+ {
2
+ "_name_or_path": "colorfulscoop/sbert-base-ja",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout": null,
9
+ "cls_token_id": 2,
10
+ "eos_token_id": 3,
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "layer_norm_eps": 1e-12,
18
+ "mask_token_id": 4,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "sep_token_id": 3,
26
+ "tokenizer_class": "DebertaV2Tokenizer",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "unk_token_id": 1,
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
config_sentence_transformers.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "3.0.1",
4
- "transformers": "4.44.1",
5
- "pytorch": "2.3.0+cpu"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": null
10
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3179c1e916cda2fa08194d292a22b763447967afbc89663c28f858657cc53975
3
  size 442491744
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:800c3480a45dc1d92fe4320d01d078184c9781a68f82f21ce65653d29ff0922b
3
  size 442491744
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 512,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,15 +1,15 @@
1
- {
2
- "bos_token": "[CLS]",
3
- "cls_token": "[CLS]",
4
- "eos_token": "[SEP]",
5
- "mask_token": "[MASK]",
6
- "pad_token": "<pad>",
7
- "sep_token": "[SEP]",
8
- "unk_token": {
9
- "content": "<unk>",
10
- "lstrip": false,
11
- "normalized": true,
12
- "rstrip": false,
13
- "single_word": false
14
- }
15
- }
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "<pad>",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "<unk>",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
tokenizer_config.json CHANGED
@@ -1,65 +1,65 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<pad>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<unk>",
13
- "lstrip": false,
14
- "normalized": true,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": false
26
- },
27
- "3": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": false
34
- },
35
- "4": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": false
42
- },
43
- "32000": {
44
- "content": "[PAD]",
45
- "lstrip": false,
46
- "normalized": true,
47
- "rstrip": false,
48
- "single_word": false,
49
- "special": false
50
- }
51
- },
52
- "bos_token": "[CLS]",
53
- "clean_up_tokenization_spaces": true,
54
- "cls_token": "[CLS]",
55
- "do_lower_case": false,
56
- "eos_token": "[SEP]",
57
- "mask_token": "[MASK]",
58
- "model_max_length": 512,
59
- "pad_token": "<pad>",
60
- "sep_token": "[SEP]",
61
- "sp_model_kwargs": {},
62
- "split_by_punct": false,
63
- "tokenizer_class": "DebertaV2Tokenizer",
64
- "unk_token": "<unk>"
65
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<unk>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "32000": {
44
+ "content": "[PAD]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ }
51
+ },
52
+ "bos_token": "[CLS]",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "[CLS]",
55
+ "do_lower_case": false,
56
+ "eos_token": "[SEP]",
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "[SEP]",
61
+ "sp_model_kwargs": {},
62
+ "split_by_punct": false,
63
+ "tokenizer_class": "DebertaV2Tokenizer",
64
+ "unk_token": "<unk>"
65
+ }