File size: 2,574 Bytes
d449243
 
d42a314
 
3c8ddd3
 
 
 
6b2a58c
 
d449243
b98815b
a3f98ab
b98815b
 
 
 
 
 
a91e4e7
d449243
7a35c80
 
d449243
c1c93b9
 
7a35c80
873c72b
d449243
d42a314
d449243
d42a314
 
 
 
d449243
d42a314
 
 
 
 
 
 
d449243
d42a314
 
 
 
 
 
d449243
d42a314
d449243
b98815b
d449243
d42a314
 
 
 
d449243
d42a314
 
d449243
d42a314
 
 
d449243
d42a314
e5323f0
658cb4f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
base_model:
- unsloth/Llama-3.2-1B-Instruct
license: llama3.2
language:
- en
- it
tags:
- translation
---
# LlaMaestra - A tiny Llama model tuned for text translation
```html
 _     _      ___  ___                _             
| |   | |     |  \/  |               | |            
| |   | | __ _| .  . | __ _  ___  ___| |_ _ __ __ _ 
| |   | |/ _` | |\/| |/ _` |/ _ \/ __| __| '__/ _` |
| |___| | (_| | |  | | (_| |  __/\__ \ |_| | | (_| |
\_____/_|\__,_\_|  |_/\__,_|\___||___/\__|_|  \__,_|
```

## Model Card 
This model was finetuned with roughly 300.000 examples of translations from English to Italian and Italian to English. The model was finetuned in a way to more directly provide a translation without much explanation.

Finetuning took about 10 hours on an A10G Nvidia GPU.

Due to its size, the model runs very well on CPUs. 
![A very italian Llama model](llamaestro-sm-bg.png)

## Usage 

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

base_model_id = "unsloth/Llama-3.2-1B-Instruct"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

base_model = AutoModelForCausalLM.from_pretrained(
    base_model_id,  # Mistral, same as before
    quantization_config=bnb_config,  # Same quantization config as before
    device_map="auto",
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)

ft_model = PeftModel.from_pretrained(base_model, "LeonardPuettmann/LlaMaestra-3.2-1B-Instruct-v0.1-4bit")

row_json = [
    {"role": "system", "content": "Your job is to return translations for sentences or words from either Italian to English or English to Italian."},
    {"role": "user", "content": "Scontri a Bologna, la destra lancia l'offensiva contro i centri sociali."}
]

prompt =  tokenizer.apply_chat_template(row_json, tokenize=False)
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")

with torch.no_grad():
    print(tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=1024)[0]))
```

## Data used 
The source for the data were sentence pairs from tatoeba.com. The data can be downloaded from here: https://tatoeba.org/downloads

## Credits

Base model: `unsloth/Llama-3.2-1B-Instruct` derived from `meta-llama/Llama-3.2-1B-Instruct`
Finetuned by: Leonard Püttmann https://www.linkedin.com/in/leonard-p%C3%BCttmann-4648231a9/