File size: 1,626 Bytes
06df169 de42a88 06df169 de42a88 06df169 05b0321 de42a88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
- NousResearch/Hermes-2-Pro-Mistral-7B
library_name: transformers
tags:
- mergekit
- merge
license: mit
language:
- en
metrics:
- accuracy
- code_eval
- bleu
- brier_score
---
# MODEL_NAME -7B-BBase
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.
### Models Merged
The following models were included in the merge:
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
* [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
weight: 1.0
- model: NousResearch/Hermes-2-Pro-Mistral-7B
parameters:
weight: 0.3
merge_method: linear
dtype: float16
```
```Python
!pip install -qU transformers
import transformers
import torch
from transformers import AutoTokenizer, MixtralForCausalLM
device = "cuda" # the device to load the model onto
model = "{{ username }}/{{ model_name }}"
imodel = MixtralForCausalLM.from_pretrained(model)
tokenizer = AutoTokenizer.from_pretrained(model)
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = imodel.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
``` |