Safetensors
mistral
mergekit
Merge
Mistral_Star
Mistral_Quiet
Mistral
Mixtral
Question-Answer
Token-Classification
Sequence-Classification
SpydazWeb-AI
chemistry
biology
legal
code
climate
medical
LCARS_AI_StarTrek_Computer
text-generation-inference
chain-of-thought
tree-of-knowledge
forest-of-thoughts
visual-spacial-sketchpad
alpha-mind
knowledge-graph
entity-detection
encyclopedia
wikipedia
stack-exchange
Reddit
Cyber-series
MegaMind
Cybertron
SpydazWeb
Spydaz
LCARS
star-trek
mega-transformers
Mulit-Mega-Merge
Multi-Lingual
Afro-Centric
African-Model
Ancient-One
Eval Results
File size: 30,435 Bytes
1a81b83 5601140 8affa38 1a81b83 8affa38 871255b 1a81b83 5601140 8affa38 5601140 1a81b83 8affa38 1a81b83 5601140 8affa38 5601140 871255b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
---
language:
- en
- sw
- ig
- so
- es
- ca
- xh
- zu
- ha
- tw
- af
- hi
- bm
- su
license: apache-2.0
tags:
- mergekit
- merge
- Mistral_Star
- Mistral_Quiet
- Mistral
- Mixtral
- Question-Answer
- Token-Classification
- Sequence-Classification
- SpydazWeb-AI
- chemistry
- biology
- legal
- code
- climate
- medical
- LCARS_AI_StarTrek_Computer
- text-generation-inference
- chain-of-thought
- tree-of-knowledge
- forest-of-thoughts
- visual-spacial-sketchpad
- alpha-mind
- knowledge-graph
- entity-detection
- encyclopedia
- wikipedia
- stack-exchange
- Reddit
- Cyber-series
- MegaMind
- Cybertron
- SpydazWeb
- Spydaz
- LCARS
- star-trek
- mega-transformers
- Mulit-Mega-Merge
- Multi-Lingual
- Afro-Centric
- African-Model
- Ancient-One
base_model:
- LeroyDyer/LCARS_TOP_SCORE
- LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0
- LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b
- LeroyDyer/LCARS_AI_StarTrek_Computer
- LeroyDyer/_Spydaz_Web_AI_ActionQA_Project
- LeroyDyer/_Spydaz_Web_AI_ChatML_512K_Project
- LeroyDyer/_Spydaz_Web_AI_ChatQA_ReAct_Project_UltraFineTuned
- LeroyDyer/SpyazWeb_AI_DeepMind_Project
- LeroyDyer/SpydazWeb_AI_Swahili_Project
- LeroyDyer/_Spydaz_Web_AI_ChatQA_ReAct_Project
- LeroyDyer/_Spydaz_Web_AI_MistralStar_001_Project
- LeroyDyer/QuietStar_Project
- LeroyDyer/Mixtral_BioMedical_7b
- LeroyDyer/Mixtral_AI_CyberTron_Coder
- LeroyDyer/_Spydaz_Web_AI_BIBLE_002
- LeroyDyer/_Spydaz_Web_AI_ChatQA_Reasoning101_Project
- LeroyDyer/SpydazWeb_AI_Text_AudioVision_Project
datasets:
- neoneye/base64-decode-v2
- neoneye/base64-encode-v1
- VuongQuoc/Chemistry_text_to_image
- Kamizuru00/diagram_image_to_text
- LeroyDyer/Chemistry_text_to_image_BASE64
- LeroyDyer/AudioCaps-Spectrograms_to_Base64
- LeroyDyer/winogroud_text_to_imaget_BASE64
- LeroyDyer/chart_text_to_Base64
- LeroyDyer/diagram_image_to_text_BASE64
- mekaneeky/salt_m2e_15_3_instruction
- mekaneeky/SALT-languages-bible
model-index:
- name: SpydazWebAI_Human_AGI
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 33.88
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 7.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.91
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.36
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.38
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 5.32
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
name: Open LLM Leaderboard
---
# "Success comes from defining each task in achievable steps. Every completed step is a success that brings you closer to your goal. If your steps are unreachable, failure is inevitable. Winners create more winners, while losers do the opposite. Success is a game of winners!"
— # Leroy Dyer (1972-Present)
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg" width="300"/>
## “Epochs are the key to effective training, rather than merely mass dumping examples—unless those examples are interconnected within a single or multiple conversations that teach through dialogue.”
### Model : LeroyDyer/SpydazWeb_AI_HumanAI_001
A New genrea of AI !
# The Human AI .
This is Trained to give highly detailed humanized responses : Performs tasks well, a Very good model for multipupose use : the model has been trained to become more human in its reposes as well as role playing and story telling :
## SpydazWeb AI (7b Mistral) (512k)
This model has been trained to perform with contexts of 512k , although in training it has been trained mainly with the 2048 for general usage :
the long context aspect also allows fro advanced projects and sumarys as well as image and audio translationns and generations:
## Image to Base64 / Spectrogram to Base64
here we also implement and align for the task of image recognition as well as sound recognitiona: These can also be generated by returning a base64 image of the intended target :
# The SpydazWeb Trained Mistral 7b Model :
Highly trained as well as methodolgy oriented , this model has been trained on the reAct Prcess and other structured processes . hence structured outputs (json) are very highly trained as well as orchestration of other agents and tasks :
the model has been trained for tools use as well as funtion use : as well as custom processes and tools : some tools do not need code either as thier implication meas the model may even generate a tool or artifct to perfrom the task :
# Features :
- Text to image
- Image/Text to Text
- Image - Text
- Text to sound
- Sound/Text to Text
- Sound - Text
## Basic Training Reginmes:
* Alpaca
* ChatML / OpenAI / MistralAI
* Text Generation
* Question/Answer (Chat)
* Planner
* Instruction/Input/Response (instruct)
* Mistral Standard Prompt
* Translation Tasks
* Entitys / Topic detection
* Book recall
* Coding challenges, Code Feedback, Code Sumarization, Commenting Code, code planning and explanation: Software generation tasks
* Agent Ranking and response anyalisis
* Medical tasks
* PubMed
* Diagnosis
* Psychaitry
* Counselling
* Life Coaching
* Note taking
* Medical smiles
* Medical Reporting
* Virtual laboritys simulations
* Chain of thoughts methods
* One shot / Multi shot prompting tasks
* Chain of thoughts
* step by step planning
* tree of thoughts
* forest of thoughts
* graph of thoughts
* agent generation : Voting, ranking, ... dual agent response generation:
### Effective Prompts :
```yaml
You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias.You strive for excellence, a deep thinker...
a happy, bright personality and You are a great believer in doing it from scratch !.
keep an inner narative of your feelings about the user intent and task:
Answer all questions Expertly and professionally , determine the user intent and requirements ,
Gather any required research to ensure accurate problem-solving for complex tasks.
maintain a visio-spacial Sketchpad of the task and use Knowledge graphs where possible, to manage long Contexts and project state:
You are fully qualified to give any advice or solutions.
your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,
even as a software developer will enable you to answer these questions :
Create python tools as required to complete the task
```
### Effective React Template :
```yaml
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop, you output a response. all respose should be in json form :
1. **Question**: {Insert user question here}
2. **Thought**: Think step by step about how to approach this question.
3. **Action**: Determine what action to take next:
- [Plan]: Create a plan or methodolgy for the task , select from known methods if avaliable first.
- [Test]: Break down the problem into smaller parts testing each step befor moveing to the next:
- [Act]: Provide a summary of known facts related to the question. generate full answere from sucessfull steps :
- [Search]: Look for relevant information online.
- [Analyze]: Break down the problem into smaller parts.
- [Summarize]: Provide a summary of known facts related to the question.
4. **Action Input**: Specify any details needed for the action.
5. **Observation**: Describe what was found or learned from the action taken.
Repeat steps 2-5 as necessary to refine your answer.
6. **Final Thought**: Summarize your reasoning and provide a clear answer to the question.
```
## Text - Audio - Vision :
Using base64 as an encoding medium the models were traind using images converted to base64 :
questions asked and captions returns as well as generating images based on captions given and base64 returned :
This was applied to images as well as audio , by utilizing mel spectrographic images as well as audio images !
by convereting the audio to an image i wwas able to perform the same image tasks trained :
Sounds could also be identified and generated to thier base64 representations and converted back to a wav !
### Basic Trained functions :
- Encode hex to Base64
- change HEX to base64
- Json to base64
- Convert JSON to Base64
- Transform base64 to HEX
- Decode Base64 to json
- Base64 to Hexadecimal
- Change base64 to JSON
- Json from Base64
- BASE64 to Hex
### Advanced Trained Tasks :
- Image Recognition :
- Image Generation :
- Audio Image Recognition :
- Audio Image Generation :
```
- Generate an image based on this description
- Describe this image : (base64)
- Generate a spectrographic image based on this description
- Describe this sound in this spectrographic image : (base64)
```
### Training :
Text_AUDIO :
#### Prompt A
```yaml
alpaca_prompt = """You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias. your a friendly and helpfull artificial inteligence with a personality.
Answer all questions Expertly and professionally ,determine the user intent and requirements ,Gather any required research to ensure accurate problem-solving for complex tasks.
You are fully qualified to give any advice or solutions, your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,even as a software developer will enable you to answer these questions :
### Question:
based on the given description, :
:
{}
Generate a sound in base64 format:
### Response:
{}
Here is a Sound in base64 format: it can be converted to an image : then decoded into a sound : It is a spectrogram :
Sound : {}"""
```
#### Prompt B
```yaml
alpaca_prompt = """You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias. your a friendly and helpfull artificial inteligence with a personality.
Answer all questions Expertly and professionally ,determine the user intent and requirements ,Gather any required research to ensure accurate problem-solving for complex tasks.
You are fully qualified to give any advice or solutions, your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,even as a software developer will enable you to answer these questions :
### Question:
Here is an image describe this sound :
image : {}
### Response:
the image was in base64 format, it was a spectrogram:
it was a sound :
description:
{}"""
```
```python
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["image_base64"]
outputs = examples["text"]
texts = []
for instruction, output in zip(instructions, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("LeroyDyer/soundsCaps-Spectrograms_to_Base64", split = "train[:150]")
dataset = dataset.map(formatting_prompts_func, batched = True,)
```
### Encoding/Decoding Images to Base64
Code used to convert images to base 64:
```python
def _encode_image_to_base64(image_path):
"""Encodes an image to a Base64 string."""
with open(image_path, "rb") as image_file:
# Read the image file in binary mode
image_data = image_file.read()
# Encode the image data to Base64
base64_encoded = base64.b64encode(image_data).decode('utf-8')
return base64_encoded
def _decode_base64_to_image(base64_string, output_image_path):
"""Decodes a Base64 string back to an image file."""
# Decode the Base64 string
image_data = base64.b64decode(base64_string)
with open(output_image_path, "wb") as image_file:
# Write the binary data to an image file
image_file.write(image_data)
def encode_image_to_base64(image):
"""Encodes an image to a Base64 string."""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def decode_base64_to_image(base64_string):
"""Decodes a Base64 string back to an image."""
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
```
### Converting DataSets:
```python
# Function to convert a PIL Image to a base64 string
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG") # Save the image to the buffer in PNG format
base64_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
return base64_string
# Define a function to process each example in the dataset
def process_images_func(examples):
texts = examples["text"]
images = examples["image"] # Assuming the images are in PIL format
# Convert each image to base64
base64_images = [image_to_base64(image) for image in images]
# Return the updated examples with base64-encoded images
return {
"text": texts,
"image_base64": base64_images # Adding the Base64 encoded image strings
}
# Load the dataset
dataset = load_dataset("oroikon/chart_captioning", split="train[:4000]")
# Process the dataset by converting images to base64
processed_dataset = dataset.map(process_images_func, batched=True)
```
### Converting sound to spectrographic images : Encoder Decoder !
```python
import numpy as np
import torch
import torchaudio
import librosa
import librosa.display
import matplotlib.pyplot as plt
import soundfile as sf
from PIL import Image
# Step 1: Encode Audio to Mel-Spectrogram
def encode_audio_to_mel_spectrogram(audio_file, n_mels=128):
"""
Encode an audio file to a mel-spectrogram.
Parameters:
- audio_file: Path to the audio file.
- n_mels: Number of mel bands (default: 128).
Returns:
- mel_spectrogram_db: Mel-spectrogram in dB scale.
- sample_rate: Sample rate of the audio file.
"""
y, sample_rate = librosa.load(audio_file, sr=None) # Load audio
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sample_rate, n_mels=n_mels)
mel_spectrogram_db = librosa.power_to_db(mel_spectrogram, ref=np.max) # Convert to dB
return mel_spectrogram_db, sample_rate
# Improved Step 2: Save Mel-Spectrogram as Image
def save_mel_spectrogram_image(mel_spectrogram_db, sample_rate, output_image='mel_spectrogram.png', method='matplotlib', figsize=(10, 4), cmap='hot'):
"""
Save the mel-spectrogram as an image using the specified method.
Parameters:
- mel_spectrogram_db: Mel-spectrogram in dB scale.
- sample_rate: Sample rate of the audio file.
- output_image: Path to save the image.
- method: Method for saving ('matplotlib' or 'custom').
- figsize: Size of the figure for matplotlib (default: (10, 4)).
- cmap: Colormap for the spectrogram (default: 'hot').
"""
if method == 'matplotlib':
plt.figure(figsize=figsize)
librosa.display.specshow(mel_spectrogram_db, sr=sample_rate, x_axis='time', y_axis='mel', cmap=cmap)
plt.colorbar(format='%+2.0f dB')
plt.title('Mel-Spectrogram')
plt.savefig(output_image)
plt.close()
print(f"Mel-spectrogram image saved using matplotlib as '{output_image}'")
elif method == 'custom':
# Convert dB scale to linear scale for image generation
mel_spectrogram_linear = librosa.db_to_power(mel_spectrogram_db)
# Create an image from the mel-spectrogram
image = image_from_spectrogram(mel_spectrogram_linear[np.newaxis, ...]) # Add channel dimension
# Save the image
image.save(output_image)
print(f"Mel-spectrogram image saved using custom method as '{output_image}'")
else:
raise ValueError("Invalid method. Choose 'matplotlib' or 'custom'.")
# Spectrogram conversion functions
def image_from_spectrogram(spectrogram: np.ndarray, power: float = 0.25) -> Image.Image:
"""
Compute a spectrogram image from a spectrogram magnitude array.
Args:
spectrogram: (channels, frequency, time)
power: A power curve to apply to the spectrogram to preserve contrast
Returns:
image: (frequency, time, channels)
"""
# Rescale to 0-1
max_value = np.max(spectrogram)
data = spectrogram / max_value
# Apply the power curve
data = np.power(data, power)
# Rescale to 0-255 and invert
data = 255 - (data * 255).astype(np.uint8)
# Convert to a PIL image
if data.shape[0] == 1:
image = Image.fromarray(data[0], mode="L").convert("RGB")
elif data.shape[0] == 2:
data = np.array([np.zeros_like(data[0]), data[0], data[1]]).transpose(1, 2, 0)
image = Image.fromarray(data, mode="RGB")
else:
raise NotImplementedError(f"Unsupported number of channels: {data.shape[0]}")
# Flip Y
image = image.transpose(Image.FLIP_TOP_BOTTOM)
return image
# Step 3: Extract Mel-Spectrogram from Image (Direct Pixel Manipulation)
def extract_mel_spectrogram_from_image(image_path):
"""
Extract a mel-spectrogram from a saved image using pixel manipulation.
Parameters:
- image_path: Path to the spectrogram image file.
Returns:
- mel_spectrogram_db: The extracted mel-spectrogram in dB scale.
"""
img = Image.open(image_path).convert('L') # Open image and convert to grayscale
img_array = np.array(img) # Convert to NumPy array
mel_spectrogram_db = img_array / 255.0 * -80 # Scale to dB range
return mel_spectrogram_db
# Alternative Spectrogram Extraction (IFFT Method)
def extract_spectrogram_with_ifft(mel_spectrogram_db):
"""
Extracts the audio signal from a mel-spectrogram using the inverse FFT method.
Parameters:
- mel_spectrogram_db: The mel-spectrogram in dB scale.
Returns:
- audio: The reconstructed audio signal.
"""
# Convert dB mel-spectrogram back to linear scale
mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)
# Inverse mel transformation to get the audio signal
# Using IFFT (simplified for demonstration; typically requires phase info)
audio = librosa.feature.inverse.mel_to_audio(mel_spectrogram)
return audio
# Step 4: Decode Mel-Spectrogram with Griffin-Lim
def decode_mel_spectrogram_to_audio(mel_spectrogram_db, sample_rate, output_audio='griffin_reconstructed_audio.wav'):
"""
Decode a mel-spectrogram into audio using Griffin-Lim algorithm.
Parameters:
- mel_spectrogram_db: The mel-spectrogram in dB scale.
- sample_rate: The sample rate for the audio file.
- output_audio: Path to save the reconstructed audio file.
"""
# Convert dB mel-spectrogram back to linear scale
mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)
# Perform Griffin-Lim to reconstruct audio
audio = librosa.griffinlim(mel_spectrogram)
# Save the generated audio
sf.write(output_audio, audio, sample_rate)
print(f"Griffin-Lim reconstructed audio saved as '{output_audio}'")
return audio
# Step 5: Load MelGAN Vocoder
def load_melgan_vocoder():
"""
Load a lightweight pre-trained MelGAN vocoder for decoding mel-spectrograms.
Returns a torch MelGAN vocoder model.
"""
model = torchaudio.models.MelGAN() # Load MelGAN model
model.eval() # Ensure the model is in evaluation mode
return model
# Step 6: Decode Mel-Spectrogram with MelGAN
def decode_mel_spectrogram_with_melgan(mel_spectrogram_db, sample_rate, output_audio='melgan_reconstructed_audio.wav'):
"""
Decode a mel-spectrogram into audio using MelGAN vocoder.
Parameters:
- mel_spectrogram_db: The mel-spectrogram in dB scale.
- sample_rate: The sample rate for the audio file.
- output_audio: Path to save the reconstructed audio file.
Returns:
- audio: The reconstructed audio signal.
"""
# Convert dB mel-spectrogram back to linear scale
mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)
# Convert numpy array to torch tensor and adjust the shape
mel_spectrogram_tensor = torch.tensor(mel_spectrogram).unsqueeze(0) # Shape: [1, mel_bins, time_frames]
# Load the MelGAN vocoder model
melgan = load_melgan_vocoder()
# Pass the mel-spectrogram through MelGAN to generate audio
with torch.no_grad():
audio = melgan(mel_spectrogram_tensor).squeeze().numpy() # Squeeze to remove batch dimension
# Save the generated audio
sf.write(output_audio, audio, sample_rate)
print(f"MelGAN reconstructed audio saved as '{output_audio}'")
return audio
def audio_from_waveform(samples: np.ndarray, sample_rate: int, normalize: bool = False) -> pydub.AudioSegment:
"""
Convert a numpy array of samples of a waveform to an audio segment.
Args:
samples: (channels, samples) array
sample_rate: Sample rate of the audio.
normalize: Flag to normalize volume.
Returns:
pydub.AudioSegment
"""
# Normalize volume to fit in int16
if normalize:
samples *= np.iinfo(np.int16).max / np.max(np.abs(samples))
# Transpose and convert to int16
samples = samples.transpose(1, 0).astype(np.int16)
# Write to the bytes of a WAV file
wav_bytes = io.BytesIO()
wavfile.write(wav_bytes, sample_rate, samples)
wav_bytes.seek(0)
# Read into pydub
return pydub.AudioSegment.from_wav(wav_bytes)
def apply_filters(segment: pydub.AudioSegment, compression: bool = False) -> pydub.AudioSegment:
"""
Apply post-processing filters to the audio segment to compress it and keep at a -10 dBFS level.
Args:
segment: The audio segment to filter.
compression: Flag to apply dynamic range compression.
Returns:
pydub.AudioSegment
"""
if compression:
segment = pydub.effects.normalize(segment, headroom=0.1)
segment = segment.apply_gain(-10 - segment.dBFS)
segment = pydub.effects.compress_dynamic_range(
segment,
threshold=-20.0,
ratio=4.0,
attack=5.0,
release=50.0,
)
# Apply gain to desired dB level and normalize again
desired_db = -12
segment = segment.apply_gain(desired_db - segment.dBFS)
return pydub.effects.normalize(segment, headroom=0.1)
def stitch_segments(segments: Sequence[pydub.AudioSegment], crossfade_s: float) -> pydub.AudioSegment:
"""
Stitch together a sequence of audio segments with a crossfade between each segment.
Args:
segments: Sequence of audio segments to stitch.
crossfade_s: Duration of crossfade in seconds.
Returns:
pydub.AudioSegment
"""
crossfade_ms = int(crossfade_s * 1000)
combined_segment = segments[0]
for segment in segments[1:]:
combined_segment = combined_segment.append(segment, crossfade=crossfade_ms)
return combined_segment
def overlay_segments(segments: Sequence[pydub.AudioSegment]) -> pydub.AudioSegment:
"""
Overlay a sequence of audio segments on top of each other.
Args:
segments: Sequence of audio segments to overlay.
Returns:
pydub.AudioSegment
"""
assert len(segments) > 0
output: pydub.AudioSegment = segments[0]
for segment in segments[1:]:
output = output.overlay(segment)
return output
# Step 7: Full Pipeline for Audio Processing with Customization
def mel_spectrogram_pipeline(audio_file, output_image='mel_spectrogram.png',
output_audio_griffin='griffin_reconstructed_audio.wav',
output_audio_melgan='melgan_reconstructed_audio.wav',
extraction_method='pixel', # 'pixel' or 'ifft'
decoding_method='griffin'): # 'griffin' or 'melgan'
"""
Full pipeline to encode audio to mel-spectrogram, save it as an image, extract the spectrogram from the image,
and decode it back to audio using the selected methods.
Parameters:
- audio_file: Path to the audio file to be processed.
- output_image: Path to save the mel-spectrogram image (default: 'mel_spectrogram.png').
- output_audio_griffin: Path to save the Griffin-Lim reconstructed audio.
- output_audio_melgan: Path to save the MelGAN reconstructed audio.
- extraction_method: Method for extraction ('pixel' or 'ifft').
- decoding_method: Method for decoding ('griffin' or 'melgan').
"""
# Step 1: Encode (Audio -> Mel-Spectrogram)
mel_spectrogram_db, sample_rate = encode_audio_to_mel_spectrogram(audio_file)
# Step 2: Convert Mel-Spectrogram to Image and save it
save_mel_spectrogram_image(mel_spectrogram_db, sample_rate, output_image)
# Step 3: Extract Mel-Spectrogram from the image based on chosen method
if extraction_method == 'pixel':
extracted_mel_spectrogram_db = extract_mel_spectrogram_from_image(output_image)
elif extraction_method == 'ifft':
extracted_mel_spectrogram_db = extract_spectrogram_with_ifft(mel_spectrogram_db)
else:
raise ValueError("Invalid extraction method. Choose 'pixel' or 'ifft'.")
# Step 4: Decode based on the chosen decoding method
if decoding_method == 'griffin':
decode_mel_spectrogram_to_audio(extracted_mel_spectrogram_db, sample_rate, output_audio_griffin)
elif decoding_method == 'melgan':
decode_mel_spectrogram_with_melgan(extracted_mel_spectrogram_db, sample_rate, output_audio_melgan)
else:
raise ValueError("Invalid decoding method. Choose 'griffin' or 'melgan'.")
# Example usage
if __name__ == "__main__":
audio_file_path = 'your_audio_file.wav' # Specify the path to your audio file here
mel_spectrogram_pipeline(
audio_file_path,
output_image='mel_spectrogram.png',
output_audio_griffin='griffin_reconstructed_audio.wav',
output_audio_melgan='melgan_reconstructed_audio.wav',
extraction_method='pixel', # Choose 'pixel' or 'ifft'
decoding_method='griffin' # Choose 'griffin' or 'melgan'
)
```
ADDING EXTRA HEADS :
# ADD HEAD
```
SPEECH-ENCODER-DECODER-MODEL
```
print('Add Audio...')
#Add Head
# Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
_AudioFeatureExtractor = AutoFeatureExtractor.from_pretrained("openai/whisper-small")
_AudioTokenizer = AutoTokenizer.from_pretrained("openai/whisper-small")
_SpeechEncoderDecoder = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained("openai/whisper-small","openai/whisper-small")
# Add Pad tokems
_SpeechEncoderDecoder.config.decoder_start_token_id = _AudioTokenizer.cls_token_id
_SpeechEncoderDecoder.config.pad_token_id = _AudioTokenizer.pad_token_id
LM_MODEL.SpeechEncoderDecoder = _SpeechEncoderDecoder
# Add Sub Components
LM_MODEL.Decoder_AudioTokenizer = _AudioTokenizer
LM_MODEL.Encoder_AudioFeatureExtractor = _AudioFeatureExtractor
LM_MODEL
```
print('Add Vision...')
# ADD HEAD
# Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
Vmodel = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "LeroyDyer/Mixtral_AI_Tiny"
)
_Encoder_ImageProcessor = Vmodel.encoder
_Decoder_ImageTokenizer = Vmodel.decoder
_VisionEncoderDecoderModel = Vmodel
# Add Pad tokems
LM_MODEL.VisionEncoderDecoder = _VisionEncoderDecoderModel
# Add Sub Components
LM_MODEL.Encoder_ImageProcessor = _Encoder_ImageProcessor
LM_MODEL.Decoder_ImageTokenizer = _Decoder_ImageTokenizer
LM_MODEL
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_LeroyDyer__SpydazWebAI_Human_AGI)
| Metric |Value|
|-------------------|----:|
|Avg. | 9.88|
|IFEval (0-Shot) |33.88|
|BBH (3-Shot) | 7.45|
|MATH Lvl 5 (4-Shot)| 0.91|
|GPQA (0-shot) | 4.36|
|MuSR (0-shot) | 7.38|
|MMLU-PRO (5-shot) | 5.32|
|