File size: 2,582 Bytes
8c8deed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7559a1a
 
 
 
 
 
 
8c8deed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
tags:
- mistral
- quantized
- text-generation-inference
- roleplay
# - rp
# - uncensored
pipeline_tag: text-generation
inference: false
# language:
# - en
# FILL THE INFORMATION:
# Reference: ChaoticNeutrals/Eris_Remix_7B
# Author: ChaoticNeutrals
# Model: Eris_Remix_7B
# Llama.cpp version: b2343
---

```python
    quantization_options = [
        "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", 
        "Q5_K_S", "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XS", "IQ3_XXS"
    ]
```

## GGUF-Imatrix quantizations for [ChaoticNeutrals/Eris_Remix_7B](https://huggingface.co/ChaoticNeutrals/Eris_Remix_7B/).

All credits belong to the author.

If you liked these, check out the work with [FantasiaFoundry's GGUF-IQ-Imatrix-Quantization-Script](https://huggingface.co/FantasiaFoundry/GGUF-Quantization-Script).

## What does "Imatrix" mean?

It stands for **Importance Matrix**, a technique used to improve the quality of quantized models. <br>
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006/) <br>
The **Imatrix** is calculated based on calibration data, and it helps determine the importance of different model activations during the quantization process. The idea is to preserve the most important information during quantization, which can help reduce the loss of model performance and lead to better quality preservation, especially when the calibration data is diverse. <br>
[[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384/)

For --imatrix data, included `imatrix.dat` was used.

Using [llama.cpp-b2343](https://github.com/ggerganov/llama.cpp/releases/tag/b2343/):

```
Base⇢ GGUF(F16)⇢ Imatrix-Data(F16)⇢ GGUF(Imatrix-Quants)
```

The new **IQ3_S** quant-option has shown to be better than the old Q3_K_S, so I added that instead of the later. Only supported in `koboldcpp-1.59.1` or higher.

If you want any specific quantization to be added, feel free to ask.

<!-- ## Model image: -->

## Original model information:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/YAcs7XqxH3wAYPXjt2vrS.png)

# Remix


### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: SpecialEdition
        layer_range: [0, 32]
      - model: Remix
        layer_range: [0, 32]
merge_method: slerp
base_model: SpecialEdition
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```