--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-action-ro results: [] --- # distilbert-action-ro This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1916 - Accuracy: 0.94 - Precision: 0.908 - Recall: 0.889 - F1: 0.895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:| | No log | 1.0 | 89 | 0.3858 | 0.87 | 0.869 | 0.762 | 0.786 | | No log | 2.0 | 178 | 0.2568 | 0.922 | 0.916 | 0.839 | 0.863 | | No log | 3.0 | 267 | 0.1916 | 0.94 | 0.908 | 0.889 | 0.895 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3