Lightmourne commited on
Commit
1a9bcb9
1 Parent(s): 6d568d5

End of training

Browse files
Files changed (2) hide show
  1. README.md +85 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.78
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6981
36
+ - Accuracy: 0.78
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 6
57
+ - eval_batch_size: 6
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 12
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.9898 | 1.0 | 75 | 1.8469 | 0.48 |
71
+ | 1.4763 | 2.0 | 150 | 1.4460 | 0.59 |
72
+ | 1.0562 | 3.0 | 225 | 1.1996 | 0.65 |
73
+ | 0.8981 | 4.0 | 300 | 1.0095 | 0.72 |
74
+ | 0.8209 | 5.0 | 375 | 0.8204 | 0.77 |
75
+ | 0.7009 | 6.0 | 450 | 0.8025 | 0.76 |
76
+ | 0.5996 | 7.0 | 525 | 0.7113 | 0.78 |
77
+ | 0.4759 | 8.0 | 600 | 0.6981 | 0.78 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.33.0.dev0
83
+ - Pytorch 2.0.1+cu118
84
+ - Datasets 2.14.4
85
+ - Tokenizers 0.13.3
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08f9ea6ea31a93fab7a7152cd3c960aabd14af40f88b264e506206de36d1bfc4
3
  size 94783376
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:544c147d965db0f0770a3a62c63d2bf64bed8c33471f1d7a63b9bfd9bd749ded
3
  size 94783376