ShareCaptioner / modeling_InternLM.py
chenlin
init
8bd85e0
raw
history blame
36.2 kB
import math
from typing import List, Union
from typing import Optional, Tuple
import rotary_emb
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from einops import rearrange
from flash_attn.layers.rotary import ApplyRotaryEmbQKV_ as LegacyApplyRotaryEmbQKV_
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_InternLM_XComposer import InternLMXComposerConfig
from .modeling_utils import LoRALinear
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "InternLMXComposerConfig"
class ApplyRotaryEmbQKV_(torch.autograd.Function):
"""
ApplyRotaryEmbQKV_
"""
@staticmethod
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None):
"""
qkv: (total, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
_, three, _, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen,
rotary_dim // 2)
q1, q2 = qkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(q1, q2, rearrange(cos, "s d -> s 1 d"),
rearrange(sin, "s d -> s 1 d"), q1, q2, False)
k1, k2 = qkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k, "s d -> s 1 d"),
rearrange(sin_k, "s d -> s 1 d"), k1, k2,
False)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
return qkv
@staticmethod
def backward(ctx, dqkv):
cos, sin, cos_k, sin_k = ctx.saved_tensors
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq1, dq2 = dqkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos, "s d -> s 1 d"),
rearrange(sin, "s d -> s 1 d"), dq1, dq2, True)
dk1, dk2 = dqkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k, "s d -> s 1 d"),
rearrange(sin_k, "s d -> s 1 d"), dk1, dk2,
True)
return dqkv, None, None, None, None
class ConvertedInternLMRotaryEmbedding(torch.nn.Module):
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
""" """
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (base**(
torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq)
self.scale_base = scale_base
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) +
0.4 * dim) / (1.4 * dim) if scale_base > 0 else None)
self.register_buffer("scale", scale)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _update_cos_sin_cache(self, x, indexes):
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)"""
if not isinstance(indexes, int):
seqlen = indexes.max().item() + 1
else:
seqlen = indexes + 1 # eval_forward
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
self._seq_len_cached = seqlen
t = torch.arange(seqlen,
device=x.device,
dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(x.dtype)
self._sin_cached = torch.sin(freqs).to(x.dtype)
else:
power = (torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device) -
seqlen // 2) / self.scale_base
scale = self.scale.to(device=power.device)**rearrange(
power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
def forward(self,
qkv: torch.Tensor,
indexes=0) -> Tuple[torch.Tensor, torch.Tensor]:
self._update_cos_sin_cache(qkv, indexes)
if self.scale is None:
return apply_rotary_emb_qkv_(qkv, self._cos_cached[indexes],
self._sin_cached[indexes]).to(
qkv.dtype)
else:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached[indexes],
self._sin_cached[indexes],
self._cos_k_cached[indexes],
self._sin_k_cached[indexes],
).to(qkv.dtype)
def eval_forward(self, qkv, seqlen_offset=0):
"""
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(qkv, seqlen_offset + qkv.shape[1])
if self.scale is None:
return legacy_apply_rotary_embed_qkv(
qkv, self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:])
else:
return legacy_apply_rotary_embed_qkv(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
self._cos_k_cached[seqlen_offset:],
self._sin_k_cached[seqlen_offset:],
)
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply
class InternConvertedInternLMAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternLMXComposerConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads}).")
self.q_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.k_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.v_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
self.hidden_size,
bias=config.kqvo_bias)
self.rotary_emb = ConvertedInternLMRotaryEmbedding(self.head_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
q = query_states
k = key_states
v = value_states
qkv = torch.cat([q, k, v], dim=2).contiguous()
qkv = qkv.view(bsz, q_len, -1)
qkv = rearrange(qkv,
"b s (three h d) -> b s three h d",
three=3,
d=self.head_dim)
if past_key_value is not None:
qkv = self.rotary_emb.eval_forward(
qkv, seqlen_offset=past_key_value[0].shape[2])
else:
qkv = self.rotary_emb.eval_forward(qkv)
query_states, key_states, value_states = qkv.unbind(2)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}")
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len),
torch.tensor(torch.finfo(dtype).min, device=device),
device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device),
mask
],
dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor,
dtype: torch.dtype,
tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool),
torch.finfo(dtype).min)
class InternLMRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
InternLMRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance +
self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2,
gather_indices)
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2,
gather_indices)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class InternLMMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int,
hidden_act: str, config: InternLMXComposerConfig):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size,
hidden_size,
bias=False)
self.up_proj = nn.Linear(hidden_size,
intermediate_size,
bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class InternLMDecoderLayer(nn.Module):
def __init__(self, config: InternLMXComposerConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = InternConvertedInternLMAttention(config=config)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
config=config,
)
self.input_layernorm = InternLMRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = InternLMRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (self_attn_weights, )
if use_cache:
outputs += (present_key_value, )
return outputs
class InternLMPreTrainedModel(PreTrainedModel):
config_class = InternLMXComposerConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["InternLMDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLMModel):
module.gradient_checkpointing = value
class InternLMModel(InternLMPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
Args:
config: InternLMXComposerConfig
"""
def __init__(self, config: InternLMXComposerConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
self.padding_idx)
self.layers = nn.ModuleList([
InternLMDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.norm = InternLMRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1]).to(
inputs_embeds.device)
combined_attention_mask = (expanded_attn_mask
if combined_attention_mask is None else
expanded_attn_mask +
combined_attention_mask)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
if inputs_embeds is None:
input_ids[input_ids==-1] = 2
inputs_embeds = self.embed_tokens(input_ids)
if query_embeds is not None:
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
batch_size, seq_length, _ = inputs_embeds.shape
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# embed positions
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds,
past_key_values_length)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states, )
past_key_value = past_key_values[
idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training and idx % 2 == 0:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (
layer_outputs[2 if output_attentions else 1], )
if output_attentions:
all_self_attns += (layer_outputs[1], )
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states, )
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in
[hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class InternLMForCausalLM(InternLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
# TODO: find a way to explicitly initialize InternLM
if hasattr(config, 'kqvo_bias'):
setattr(config, 'kqvo_bias', config.kqvo_bias)
else:
setattr(config, 'kqvo_bias', False)
self.model = InternLMModel(config)
self.lm_head = nn.Linear(config.hidden_size,
config.vocab_size,
bias=False)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_pretrained(cls,
pretrained_model_name_or_path,
llm_cfg=None,
*model_args,
**kwargs):
if llm_cfg:
if 'torch_dtype' in kwargs:
llm_cfg.torch_dtype = kwargs['torch_dtype']
if 'load_in_8bit' in kwargs:
llm_cfg.load_in_8bit = kwargs['load_in_8bit']
if 'device_map' in kwargs:
llm_cfg.device_map = kwargs['device_map']
return cls._from_config(llm_cfg)
else:
return super().from_pretrained(pretrained_model_name_or_path,
*model_args, **kwargs)
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, InternLMForCausalLM
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
query_embeds=query_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
# Enable model parallelism
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
query_embeds=None,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
query_embeds = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update({
"position_ids": position_ids,
"query_embeds": query_embeds,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
})
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past), )
return reordered_past