|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from .configuration_InternLM_XComposer import InternLMXComposerConfig |
|
from .modeling_utils import LoRALinear |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "InternLMXComposerConfig" |
|
|
|
|
|
def rotary_embed(x1, x2, cos, sin, conj): |
|
x1, x2 = x1.float(), x2.float() |
|
if conj: |
|
x1, x2 = x1 * cos + x2 * sin, x1 * sin + x2 * cos |
|
else: |
|
x1, x2 = x1 * cos - x2 * sin, x1 * sin + x2 * cos |
|
return x1, x2 |
|
|
|
|
|
class LegacyApplyRotaryEmbQKV_(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False): |
|
""" |
|
qkv: (batch_size, seqlen, 3, nheads, headdim) |
|
cos, sin: (seqlen, rotary_dim / 2) |
|
cos_k, sin_k: (seqlen, rotary_dim / 2), optional |
|
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of |
|
1st half and 2nd half (GPT-NeoX style). |
|
rotary_dim must be <= headdim |
|
Apply rotary embedding *inplace* to the first rotary_dim of q and k. |
|
""" |
|
batch, seqlen, three, nheads, headdim = qkv.shape |
|
assert three == 3 |
|
rotary_seqlen, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
assert rotary_dim <= headdim |
|
assert seqlen <= rotary_seqlen |
|
cos_k = cos if cos_k is None else cos_k |
|
sin_k = sin if sin_k is None else sin_k |
|
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2) |
|
q_ro = qkv[:, :, 0, :, :rotary_dim] |
|
q1, q2 = q_ro.chunk(2, dim=-1) if not interleaved else (q_ro[..., ::2], q_ro[..., 1::2]) |
|
|
|
|
|
q1, q2 = rotary_embed(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'), rearrange(sin[:seqlen], 's d -> s 1 d'), False) |
|
qkv[:, :, 0, :, :rotary_dim] = torch.cat([q1, q2], dim=-1) |
|
k_ro = qkv[:, :, 1, :, :rotary_dim] |
|
k1, k2 = k_ro.chunk(2, dim=-1) if not interleaved else (k_ro[..., ::2], k_ro[..., 1::2]) |
|
|
|
|
|
k1, k2 = rotary_embed(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'), rearrange(sin_k[:seqlen], 's d -> s 1 d'), False) |
|
qkv[:, :, 1, :, :rotary_dim] = torch.cat([k1, k2], dim=-1) |
|
ctx.save_for_backward(cos, sin, cos_k, sin_k) |
|
ctx.interleaved = interleaved |
|
return qkv |
|
|
|
@staticmethod |
|
def backward(ctx, dqkv): |
|
cos, sin, cos_k, sin_k = ctx.saved_tensors |
|
_, seqlen, _, _, headdim = dqkv.shape |
|
rotary_dim = cos.shape[-1] |
|
rotary_dim *= 2 |
|
dq_ro = dqkv[:, :, 0, :, :rotary_dim] |
|
dq1, dq2 = (dq_ro.chunk(2, dim=-1) if not ctx.interleaved |
|
else (dq_ro[..., ::2], dq_ro[..., 1::2])) |
|
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'), |
|
rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True) |
|
dk_ro = dqkv[:, :, 1, :, :rotary_dim] |
|
dk1, dk2 = (dk_ro.chunk(2, dim=-1) if not ctx.interleaved |
|
else (dk_ro[..., ::2], dk_ro[..., 1::2])) |
|
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k[:seqlen], 's d -> s 1 d'), |
|
rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1, dk2, True) |
|
return dqkv, None, None, None, None, None |
|
|
|
|
|
class ConvertedInternLMRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim: int, base=10000, scale_base=0, device=None): |
|
""" """ |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (base**( |
|
torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.scale_base = scale_base |
|
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + |
|
0.4 * dim) / (1.4 * dim) if scale_base > 0 else None) |
|
self.register_buffer("scale", scale) |
|
|
|
self._seq_len_cached = 0 |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
self._cos_k_cached = None |
|
self._sin_k_cached = None |
|
|
|
def _update_cos_sin_cache(self, x, indexes): |
|
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)""" |
|
if not isinstance(indexes, int): |
|
seqlen = indexes.max().item() + 1 |
|
else: |
|
seqlen = indexes + 1 |
|
|
|
|
|
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype: |
|
self._seq_len_cached = seqlen |
|
t = torch.arange(seqlen, |
|
device=x.device, |
|
dtype=self.inv_freq.dtype) |
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device)) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(x.dtype) |
|
self._sin_cached = torch.sin(freqs).to(x.dtype) |
|
else: |
|
power = (torch.arange( |
|
seqlen, dtype=self.scale.dtype, device=self.scale.device) - |
|
seqlen // 2) / self.scale_base |
|
scale = self.scale.to(device=power.device)**rearrange( |
|
power, "s -> s 1") |
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype) |
|
|
|
def eval_forward(self, qkv, seqlen_offset=0): |
|
""" |
|
seqlen_offset: can be used in generation where the qkv being passed in is only the last |
|
token in the batch. |
|
""" |
|
self._update_cos_sin_cache(qkv, seqlen_offset + qkv.shape[1]) |
|
if self.scale is None: |
|
return legacy_apply_rotary_embed_qkv( |
|
qkv, self._cos_cached[seqlen_offset:], |
|
self._sin_cached[seqlen_offset:]) |
|
else: |
|
return legacy_apply_rotary_embed_qkv( |
|
qkv, |
|
self._cos_cached[seqlen_offset:], |
|
self._sin_cached[seqlen_offset:], |
|
self._cos_k_cached[seqlen_offset:], |
|
self._sin_k_cached[seqlen_offset:], |
|
) |
|
|
|
|
|
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply |
|
|
|
|
|
class InternConvertedInternLMAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
def __init__(self, config: InternLMXComposerConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads}).") |
|
self.q_proj = nn.Linear(self.hidden_size, |
|
self.num_heads * self.head_dim, |
|
bias=config.kqvo_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, |
|
self.num_heads * self.head_dim, |
|
bias=config.kqvo_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, |
|
self.num_heads * self.head_dim, |
|
bias=config.kqvo_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, |
|
self.hidden_size, |
|
bias=config.kqvo_bias) |
|
|
|
self.rotary_emb = ConvertedInternLMRotaryEmbedding(self.head_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, |
|
self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
q = query_states |
|
k = key_states |
|
v = value_states |
|
|
|
qkv = torch.cat([q, k, v], dim=2).contiguous() |
|
qkv = qkv.view(bsz, q_len, -1) |
|
qkv = rearrange(qkv, |
|
"b s (three h d) -> b s three h d", |
|
three=3, |
|
d=self.head_dim) |
|
|
|
if past_key_value is not None: |
|
qkv = self.rotary_emb.eval_forward( |
|
qkv, seqlen_offset=past_key_value[0].shape[2]) |
|
else: |
|
qkv = self.rotary_emb.eval_forward(qkv) |
|
|
|
query_states, key_states, value_states = qkv.unbind(2) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
|
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose( |
|
2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}") |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = torch.max( |
|
attn_weights, |
|
torch.tensor(torch.finfo(attn_weights.dtype).min)) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, |
|
dim=-1, |
|
dtype=torch.float32).to( |
|
query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}") |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
def _make_causal_mask(input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), |
|
torch.tensor(torch.finfo(dtype).min, device=device), |
|
device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([ |
|
torch.zeros( |
|
tgt_len, past_key_values_length, dtype=dtype, device=device), |
|
mask |
|
], |
|
dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, |
|
tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, |
|
dtype: torch.dtype, |
|
tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, |
|
src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), |
|
torch.finfo(dtype).min) |
|
|
|
|
|
class InternLMRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternLMRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, |
|
keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + |
|
self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., :x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
gather_indices = position_ids[:, None, :, None] |
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) |
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, |
|
gather_indices) |
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, |
|
gather_indices) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class InternLMMLP(nn.Module): |
|
def __init__(self, hidden_size: int, intermediate_size: int, |
|
hidden_act: str, config: InternLMXComposerConfig): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, |
|
hidden_size, |
|
bias=False) |
|
self.up_proj = nn.Linear(hidden_size, |
|
intermediate_size, |
|
bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
class InternLMDecoderLayer(nn.Module): |
|
def __init__(self, config: InternLMXComposerConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = InternConvertedInternLMAttention(config=config) |
|
self.mlp = InternLMMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
config=config, |
|
) |
|
self.input_layernorm = InternLMRMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = InternLMRMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, |
|
torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states, ) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, ) |
|
|
|
if use_cache: |
|
outputs += (present_key_value, ) |
|
|
|
return outputs |
|
|
|
|
|
class InternLMPreTrainedModel(PreTrainedModel): |
|
config_class = InternLMXComposerConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["InternLMDecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, InternLMModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class InternLMModel(InternLMPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`] |
|
Args: |
|
config: InternLMXComposerConfig |
|
""" |
|
def __init__(self, config: InternLMXComposerConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, |
|
self.padding_idx) |
|
self.layers = nn.ModuleList([ |
|
InternLMDecoderLayer(config) |
|
for _ in range(config.num_hidden_layers) |
|
]) |
|
self.norm = InternLMRMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, |
|
inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, |
|
inputs_embeds.dtype, |
|
tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device) |
|
combined_attention_mask = (expanded_attn_mask |
|
if combined_attention_mask is None else |
|
expanded_attn_mask + |
|
combined_attention_mask) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
query_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds" |
|
) |
|
|
|
if inputs_embeds is None: |
|
input_ids[input_ids==-1] = 2 |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
if query_embeds is not None: |
|
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1) |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(past_key_values_length, |
|
seq_length + past_key_values_length, |
|
dtype=torch.long, |
|
device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), |
|
dtype=torch.bool, |
|
device=inputs_embeds.device) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, |
|
past_key_values_length) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
past_key_value = past_key_values[ |
|
idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += ( |
|
layer_outputs[2 if output_attentions else 1], ) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1], ) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v for v in |
|
[hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class InternLMForCausalLM(InternLMPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
if hasattr(config, 'kqvo_bias'): |
|
setattr(config, 'kqvo_bias', config.kqvo_bias) |
|
else: |
|
setattr(config, 'kqvo_bias', False) |
|
self.model = InternLMModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, |
|
config.vocab_size, |
|
bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@classmethod |
|
def from_pretrained(cls, |
|
pretrained_model_name_or_path, |
|
llm_cfg=None, |
|
*model_args, |
|
**kwargs): |
|
if llm_cfg: |
|
if 'torch_dtype' in kwargs: |
|
llm_cfg.torch_dtype = kwargs['torch_dtype'] |
|
if 'load_in_8bit' in kwargs: |
|
llm_cfg.load_in_8bit = kwargs['load_in_8bit'] |
|
if 'device_map' in kwargs: |
|
llm_cfg.device_map = kwargs['device_map'] |
|
return cls._from_config(llm_cfg) |
|
else: |
|
return super().from_pretrained(pretrained_model_name_or_path, |
|
*model_args, **kwargs) |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
query_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, InternLMForCausalLM |
|
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
query_embeds=query_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
|
|
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits, ) + outputs[1:] |
|
return (loss, ) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, |
|
input_ids, |
|
query_embeds=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
**kwargs): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
query_embeds = None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update({ |
|
"position_ids": position_ids, |
|
"query_embeds": query_embeds, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
}) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past), ) |
|
return reordered_past |
|
|