--- library_name: transformers base_model: MCG-NJU/videomae-base tags: - generated_from_trainer model-index: - name: videomae-base-readminds-assignment results: [] --- # videomae-base-readminds-assignment This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5236 | 0.12 | 12 | 1.4575 | | 1.1957 | 1.12 | 24 | 1.4403 | | 0.7669 | 2.12 | 36 | 1.4573 | | 0.4632 | 3.12 | 48 | 1.5034 | | 0.299 | 4.12 | 60 | 1.5987 | | 0.1672 | 5.12 | 72 | 1.5975 | | 0.0682 | 6.12 | 84 | 1.5670 | | 0.0324 | 7.12 | 96 | 1.5827 | | 0.0155 | 8.04 | 100 | 1.5827 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.0