PreFLMR_ViT-L_ENCN / flmr_utils.py
LinWeizheDragon's picture
Upload folder using huggingface_hub
66ae8fc verified
"""
This file contains utility functions for the FLMR model. Some of these functions are adapted from the original ColBERT codebase.
"""
import torch
import torch.distributed as dist
def get_rank():
return dist.get_rank()
def get_world_size():
return dist.get_world_size()
def get_default_group():
return dist.group.WORLD
# TODO: The masking below might also be applicable in the kNN part
def colbert_score_reduce(scores_padded, D_mask):
# print('D_mask', D_mask.shape, D_mask)
D_padding = ~D_mask.view(scores_padded.size(0), scores_padded.size(1)).bool()
# print('D_padding', D_padding.shape, D_padding)
# print(D_padding[0].tolist())
scores_padded[D_padding] = -9999
scores = scores_padded.max(1).values
return scores.sum(-1)
def colbert_score(Q, D_padded, D_mask, use_gpu=False):
"""
Supply sizes Q = (1 | num_docs, *, dim) and D = (num_docs, *, dim).
If Q.size(0) is 1, the matrix will be compared with all passages.
Otherwise, each query matrix will be compared against the *aligned* passage.
EVENTUALLY: Consider masking with -inf for the maxsim (or enforcing a ReLU).
"""
if use_gpu:
Q, D_padded, D_mask = Q.cuda(), D_padded.cuda(), D_mask.cuda()
assert Q.dim() == 3, Q.size()
assert D_padded.dim() == 3, D_padded.size()
assert Q.size(0) in [1, D_padded.size(0)]
scores = D_padded @ Q.to(dtype=D_padded.dtype).permute(0, 2, 1)
return colbert_score_reduce(scores, D_mask)
def _sort_by_length(ids, mask, bsize, *args):
if ids.size(0) <= bsize:
return ids, mask, torch.arange(ids.size(0))
indices = mask.sum(-1).sort().indices
reverse_indices = indices.sort().indices
return_array = [ids[indices], mask[indices]]
for arg in args:
if isinstance(arg, torch.Tensor):
return_array.append(arg[indices])
else:
# arg is a list, and we want to sort the list according to indices
return_array.append([arg[i] for i in indices])
return *return_array, reverse_indices
def _split_into_batches(ids, mask, bsize, *args):
batches = []
for offset in range(0, ids.size(0), bsize):
batch = [ids[offset : offset + bsize], mask[offset : offset + bsize]]
for arg in args:
batch.append(arg[offset : offset + bsize])
batches.append(batch)
return batches