# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for FLMR.""" from typing import List, Optional, Union from transformers.utils import TensorType, logging from transformers.models.bert.tokenization_bert import BertTokenizer from transformers import AutoTokenizer from .configuration_flmr import FLMRTextConfig logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer_config.json"} CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "LinWeizheDragon/PreFLMR_ViT-L": ( "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/context_tokenizer/vocab.txt" ), "LinWeizheDragon/FLMR": ( "https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/context_tokenizer/vocab.txt" ), }, "tokenizer_file": { "LinWeizheDragon/PreFLMR_ViT-L": ( "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/context_tokenizer/tokenizer_config.json" ), "LinWeizheDragon/FLMR": ( "https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/context_tokenizer/tokenizer_config.json" ), }, } QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "LinWeizheDragon/PreFLMR_ViT-L": ( "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/query_tokenizer/vocab.txt" ), "LinWeizheDragon/FLMR": ("https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/query_tokenizer/vocab.txt"), }, "tokenizer_file": { "LinWeizheDragon/PreFLMR_ViT-L": ( "https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L/resolve/main/query_tokenizer/tokenizer_config.json" ), "LinWeizheDragon/FLMR": ( "https://huggingface.co/LinWeizheDragon/FLMR/resolve/main/query_tokenizer/tokenizer_config.json" ), }, } CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "LinWeizheDragon/PreFLMR_ViT-L": 512, "LinWeizheDragon/FLMR": 512, } QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "LinWeizheDragon/PreFLMR_ViT-L": 512, "LinWeizheDragon/FLMR": 512, } CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION = { "LinWeizheDragon/PreFLMR_ViT-L": {"do_lower_case": True}, "LinWeizheDragon/FLMR": {"do_lower_case": True}, } QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION = { "LinWeizheDragon/PreFLMR_ViT-L": {"do_lower_case": True}, "LinWeizheDragon/FLMR": {"do_lower_case": True}, } # Modified from colbert.modeling.tokenization class FLMRBertContextEncoderTokenizer(BertTokenizer): r""" Construct a FLMRContextEncoder tokenizer. [`FLMRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION def __init__( self, doc_maxlen: Optional[int] = 512, **kwargs, ): super().__init__( doc_maxlen=doc_maxlen, **kwargs, ) self.doc_maxlen = doc_maxlen self.D_marker_token, self.D_marker_token_id = "[D]", self.convert_tokens_to_ids("[unused1]") def __call__( self, text: List[str], padding: Optional[Union[str, bool]] = "max_length", truncation: Optional[Union[bool, str]] = "longest_first", max_length: Optional[int] = 512, return_tensors: Optional[Union[str, TensorType]] = "pt", **kwargs, ): # add placehold for the [D] marker text = [". " + x for x in text] if max_length > self.doc_maxlen: # can not exceed the pre-set length max_length = self.doc_maxlen encoding = super().__call__( text, padding=padding, truncation=truncation, return_tensors=return_tensors, max_length=max_length, **kwargs, ) ids, mask = encoding["input_ids"], encoding["attention_mask"] # postprocess for the [D] marker ids[:, 1] = self.D_marker_token_id # if bsize: # # This bsize function is used in the original ColBERT codebase to split inputs into multiple batches # if image_features is not None: # ids, mask, image_features, reverse_indices = _sort_by_length(ids, mask, bsize, image_features=image_features) # batches = _split_into_batches(ids, mask, bsize, image_features=image_features) # else: # ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize) # batches = _split_into_batches(ids, mask, bsize) # return batches, reverse_indices encoding["input_ids"] = ids encoding["attention_mask"] = mask return encoding # Modified from colbert.modeling.tokenization class FLMRBertQueryEncoderTokenizer(BertTokenizer): r""" Constructs a FLMRQueryEncoder tokenizer. [`FLMRQueryEncoder`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION def __init__( self, *args, query_maxlen: Optional[int] = 32, attend_to_mask_tokens: Optional[bool] = False, **kwargs, ): super().__init__( *args, query_maxlen=query_maxlen, attend_to_mask_tokens=attend_to_mask_tokens, **kwargs, ) self.query_maxlen = query_maxlen self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable self.attend_to_mask_tokens = attend_to_mask_tokens self.Q_marker_token, self.Q_marker_token_id = "[Q]", self.convert_tokens_to_ids("[unused0]") def __call__( self, text: Union[str, List[str]], padding: Optional[Union[str, bool]] = "max_length", truncation: Optional[Union[bool, str]] = True, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = "pt", **kwargs, ): if isinstance(text, str): # convert to list if input is a single string text = [text] # add placehold for the [Q] marker text = [". " + x for x in text] if max_length is not None: # use user specified max_length pass else: # use default max length max_length = self.query_maxlen encoding = super().__call__( text, padding=padding, truncation=truncation, return_tensors=return_tensors, max_length=max_length, **kwargs, ) ids, mask = encoding["input_ids"], encoding["attention_mask"] # postprocess for the [Q] marker and the [MASK] augmentation ids[:, 1] = self.Q_marker_token_id ids[ids == self.pad_token_id] = self.mask_token_id if self.attend_to_mask_tokens: # When attend_to_mask_tokens is True, we want to attend to the [MASK] tokens mask[ids == self.mask_token_id] = 1 assert mask.sum().item() == mask.size(0) * mask.size(1), mask return {"input_ids": ids, "attention_mask": mask} class FLMRAutoContextEncoderTokenizer: r""" Construct a ContextEncoderTokenizer tokenizer with AutoTokenizer. [`FLMRAutoContextEncoderTokenizer`] is identical to [`AutoTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`AutoTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION def __init__( self, *args, doc_maxlen: Optional[int] = 512, **kwargs, ): self.doc_maxlen = doc_maxlen self.tokenizer = AutoTokenizer.from_pretrained(*args, **kwargs) self.additional_special_tokens = self.tokenizer.additional_special_tokens def __call__( self, text: List[str], padding: Optional[Union[str, bool]] = "max_length", truncation: Optional[Union[bool, str]] = "longest_first", max_length: Optional[int] = 512, return_tensors: Optional[Union[str, TensorType]] = "pt", **kwargs, ): # add placehold for the [D] marker text = [". " + x for x in text] if max_length > self.doc_maxlen: # can not exceed the pre-set length max_length = self.doc_maxlen encoding = self.tokenizer( text, padding=padding, truncation=True, return_tensors=return_tensors, max_length=max_length, **kwargs, ) ids, mask = encoding["input_ids"], encoding["attention_mask"] encoding["input_ids"] = ids encoding["attention_mask"] = mask return encoding def encode(self, text, text_pair=None, add_special_tokens=True, **kwargs): return self.tokenizer.encode(text, text_pair, add_special_tokens, **kwargs) def add_special_tokens(self, token, **kwargs): return self.tokenizer.add_special_tokens(token, **kwargs) def save_pretrained(self, path): self.tokenizer.save_pretrained(path) # Modified from colbert.modeling.tokenization class FLMRAutoQueryEncoderTokenizer: r""" Constructs a QueryEncoderTokenizer tokenizer with AutoTokenizer. [`FLMRAutoQueryEncoderTokenizer`] is identical to [`AutoTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`AutoTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION def __init__( self, *args, query_maxlen: Optional[int] = 32, attend_to_mask_tokens: Optional[bool] = False, **kwargs, ): self.tokenizer = AutoTokenizer.from_pretrained(*args, **kwargs) self.additional_special_tokens = self.tokenizer.additional_special_tokens self.query_maxlen = query_maxlen self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable self.attend_to_mask_tokens = attend_to_mask_tokens def __call__( self, text: Union[str, List[str]], padding: Optional[Union[str, bool]] = "max_length", truncation: Optional[Union[bool, str]] = True, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = "pt", **kwargs, ): if isinstance(text, str): # convert to list if input is a single string text = [text] # add placehold for the [Q] marker text = [". " + x for x in text] if max_length is not None: # use user specified max_length pass else: # use default max length max_length = self.query_maxlen encoding = self.tokenizer( text, padding=padding, truncation=True, return_tensors=return_tensors, max_length=max_length, **kwargs, ) ids, mask = encoding["input_ids"], encoding["attention_mask"] if self.attend_to_mask_tokens: # When attend_to_mask_tokens is True, we want to attend to the [MASK] tokens mask[ids == self.mask_token_id] = 1 assert mask.sum().item() == mask.size(0) * mask.size(1), mask return {"input_ids": ids, "attention_mask": mask} def encode(self, text, text_pair=None, add_special_tokens=True, **kwargs): return self.tokenizer.encode(text, text_pair, add_special_tokens, **kwargs) def add_special_tokens(self, token, **kwargs): return self.tokenizer.add_special_tokens(token, **kwargs) def save_pretrained(self, path): self.tokenizer.save_pretrained(path) class FLMRContextEncoderTokenizer: r""" Constructs a FLMRContextEncoderTokenizer tokenizer. [`FLMRContextEncoderTokenizer`] is identical to [`BertTokenizer`] or [`AutoTokenizer`], depends on whether the tokenizer is initialized from bert. """ def __init__(self) -> None: pass @classmethod def from_pretrained( cls, *args, text_config: Optional[FLMRTextConfig] = None, **kwargs, ): if text_config.text_encoder_base_model == "bert-base-uncased": return FLMRBertContextEncoderTokenizer.from_pretrained(*args, **kwargs) else: return FLMRAutoContextEncoderTokenizer(*args, **kwargs) class FLMRQueryEncoderTokenizer: r""" Constructs a FLMRContextEncoderTokenizer tokenizer. [`FLMRContextEncoderTokenizer`] is identical to [`BertTokenizer`] or [`AutoTokenizer`], depends on whether the tokenizer is initialized from bert. """ def __init__(self) -> None: pass @classmethod def from_pretrained( cls, *args, text_config: Optional[FLMRTextConfig] = None, **kwargs, ): if text_config.text_encoder_base_model == "bert-base-uncased": return FLMRBertQueryEncoderTokenizer.from_pretrained(*args, **kwargs) else: return FLMRAutoQueryEncoderTokenizer(*args, query_maxlen=text_config.query_maxlen, **kwargs)