O0503HMA14
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5323 | 0.09 | 10 | 0.2034 |
0.1644 | 0.18 | 20 | 0.1547 |
0.1516 | 0.27 | 30 | 0.1622 |
0.1553 | 0.36 | 40 | 0.1547 |
0.1506 | 0.45 | 50 | 0.1500 |
0.1532 | 0.54 | 60 | 0.1481 |
0.1508 | 0.63 | 70 | 0.1471 |
0.1501 | 0.73 | 80 | 0.1557 |
0.1465 | 0.82 | 90 | 0.1503 |
0.1514 | 0.91 | 100 | 0.1545 |
0.1544 | 1.0 | 110 | 0.1494 |
0.147 | 1.09 | 120 | 0.1537 |
0.1442 | 1.18 | 130 | 0.1375 |
0.2165 | 1.27 | 140 | 0.1882 |
0.6214 | 1.36 | 150 | 0.1480 |
0.1734 | 1.45 | 160 | 0.0767 |
0.0796 | 1.54 | 170 | 0.1363 |
0.0821 | 1.63 | 180 | 0.0629 |
0.0612 | 1.72 | 190 | 0.1860 |
0.083 | 1.81 | 200 | 0.0623 |
0.0365 | 1.9 | 210 | 0.0327 |
0.0253 | 1.99 | 220 | 0.0318 |
0.0487 | 2.08 | 230 | 0.0331 |
0.0271 | 2.18 | 240 | 0.0238 |
0.0182 | 2.27 | 250 | 0.0153 |
0.0171 | 2.36 | 260 | 0.0124 |
0.0123 | 2.45 | 270 | 0.0127 |
0.0075 | 2.54 | 280 | 0.0094 |
0.0161 | 2.63 | 290 | 0.0101 |
0.0098 | 2.72 | 300 | 0.0092 |
0.01 | 2.81 | 310 | 0.0090 |
0.0113 | 2.9 | 320 | 0.0094 |
0.0099 | 2.99 | 330 | 0.0091 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0503HMA14
Base model
allenai/OLMo-1B