O0508V4
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.0718 | 0.09 | 10 | 2.8079 |
1.195 | 0.18 | 20 | 0.1632 |
0.1544 | 0.27 | 30 | 0.1530 |
0.1554 | 0.36 | 40 | 0.1549 |
0.1521 | 0.45 | 50 | 0.1545 |
0.1525 | 0.54 | 60 | 0.1528 |
0.156 | 0.63 | 70 | 0.1505 |
0.1502 | 0.73 | 80 | 0.1601 |
0.153 | 0.82 | 90 | 0.1507 |
0.152 | 0.91 | 100 | 0.1521 |
0.152 | 1.0 | 110 | 0.1515 |
0.1459 | 1.09 | 120 | 0.1506 |
0.146 | 1.18 | 130 | 0.1512 |
0.1468 | 1.27 | 140 | 0.1476 |
0.1485 | 1.36 | 150 | 0.1465 |
0.1433 | 1.45 | 160 | 0.1495 |
0.1453 | 1.54 | 170 | 0.1464 |
0.1463 | 1.63 | 180 | 0.1459 |
0.1465 | 1.72 | 190 | 0.1516 |
0.1462 | 1.81 | 200 | 0.1488 |
0.1483 | 1.9 | 210 | 0.1472 |
0.1461 | 1.99 | 220 | 0.1492 |
0.1466 | 2.08 | 230 | 0.1473 |
0.1417 | 2.18 | 240 | 0.1464 |
0.1433 | 2.27 | 250 | 0.1473 |
0.1447 | 2.36 | 260 | 0.1481 |
0.1434 | 2.45 | 270 | 0.1471 |
0.1425 | 2.54 | 280 | 0.1459 |
0.1426 | 2.63 | 290 | 0.1468 |
0.1448 | 2.72 | 300 | 0.1458 |
0.1435 | 2.81 | 310 | 0.1458 |
0.1448 | 2.9 | 320 | 0.1459 |
0.146 | 2.99 | 330 | 0.1459 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0508V4
Base model
allenai/OLMo-1B