|
"""Dbrx configuration.""" |
|
from typing import Any, Optional |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class DbrxAttentionConfig(PretrainedConfig): |
|
"""Configuration class for Dbrx Attention. |
|
|
|
[`DbrxAttention`] class. It is used to instantiate attention layers |
|
according to the specified arguments, defining the layers architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
attn_pdrop (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for the attention layers. |
|
clip_qkv (`float`, *optional*, defualts to None): |
|
If not `None`, clip the queries, keys, and values in the attention layer to this value. |
|
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads. |
|
rope_theta (float): The base frequency for rope. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
attn_pdrop: float = 0, |
|
clip_qkv: Optional[float] = None, |
|
kv_n_heads: int = 1, |
|
rope_theta: float = 10000.0, |
|
**kwargs: Any, |
|
): |
|
super().__init__(**kwargs) |
|
self.attn_pdrop = attn_pdrop |
|
self.clip_qkv = clip_qkv |
|
self.kv_n_heads = kv_n_heads |
|
self.rope_theta = rope_theta |
|
|
|
for k in ['model_type']: |
|
if k in kwargs: |
|
kwargs.pop(k) |
|
if len(kwargs) != 0: |
|
raise ValueError(f'Found unknown {kwargs=}') |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: str, |
|
**kwargs: Any) -> 'PretrainedConfig': |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, |
|
**kwargs) |
|
|
|
if config_dict.get('model_type') == 'dbrx': |
|
config_dict = config_dict['attn_config'] |
|
|
|
if 'model_type' in config_dict and hasattr( |
|
cls, |
|
'model_type') and config_dict['model_type'] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
+ |
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class DbrxFFNConfig(PretrainedConfig): |
|
"""Configuration class for Dbrx FFN. |
|
|
|
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to |
|
the specified arguments, defining the layers architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
ffn_act_fn (dict, optional): A dict specifying activation function for the FFN. |
|
The dict should have a key 'name' with the value being the name of |
|
the activation function along with any additional keyword arguments. |
|
ffn_hidden_size (int, optional): The hidden size of the feedforward network. |
|
moe_num_experts (int, optional): The number of experts in the mixture of experts layer. |
|
moe_top_k (int, optional): The number of experts to use in the mixture of experts layer. |
|
moe_jitter_eps (float, optional): The jitter epsilon for the mixture of experts layer. |
|
moe_loss_weight (float, optional): The loss weight for the mixture of experts layer. |
|
moe_normalize_expert_weights (float, optional): The normalization factor for the expert weights. |
|
uniform_expert_assignment (bool, optional): Whether to use uniform expert assignment. |
|
This should only be used for benchmarking purposes. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ffn_act_fn: Optional[dict] = None, |
|
ffn_hidden_size: int = 3584, |
|
moe_num_experts: int = 4, |
|
moe_top_k: int = 1, |
|
moe_jitter_eps: Optional[float] = None, |
|
moe_loss_weight: float = 0.01, |
|
moe_normalize_expert_weights: Optional[float] = 1, |
|
uniform_expert_assignment: bool = False, |
|
**kwargs: Any, |
|
): |
|
super().__init__() |
|
if ffn_act_fn is None: |
|
ffn_act_fn = {'name': 'silu'} |
|
self.ffn_act_fn = ffn_act_fn |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.moe_num_experts = moe_num_experts |
|
self.moe_top_k = moe_top_k |
|
self.moe_jitter_eps = moe_jitter_eps |
|
self.moe_loss_weight = moe_loss_weight |
|
self.moe_normalize_expert_weights = moe_normalize_expert_weights |
|
self.uniform_expert_assignment = uniform_expert_assignment |
|
|
|
for k in ['model_type']: |
|
if k in kwargs: |
|
kwargs.pop(k) |
|
if len(kwargs) != 0: |
|
raise ValueError(f'Found unknown {kwargs=}') |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: str, |
|
**kwargs: Any) -> 'PretrainedConfig': |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, |
|
**kwargs) |
|
|
|
if config_dict.get('model_type') == 'dbrx': |
|
config_dict = config_dict['ffn_config'] |
|
|
|
if 'model_type' in config_dict and hasattr( |
|
cls, |
|
'model_type') and config_dict['model_type'] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
+ |
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class DbrxConfig(PretrainedConfig): |
|
"""Configuration class for Dbrx. |
|
|
|
[`DbrxModel`]. It is used to instantiate a Dbrx model according to the |
|
specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
d_model (`int`, *optional*, defaults to 6144): |
|
Dimensionality of the embeddings and hidden states. |
|
n_heads (`int`, *optional*, defaults to 48): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_layers (`int`, *optional*, defaults to 40): |
|
Number of hidden layers in the Transformer encoder. |
|
max_seq_len (`int`, *optional*, defaults to 32768): |
|
The maximum sequence length of the model. |
|
vocab_size (`int`, *optional*, defaults to 100352): |
|
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`DbrxModel`]. |
|
resid_pdrop (`float`, *optional*, defaults to 0.0): |
|
The dropout probability applied to the attention output before combining with residual. |
|
emb_pdrop (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for the embedding layer. |
|
attn_config (`dict`, *optional*): |
|
A dictionary used to configure the model's attention module. |
|
ffn_config (`dict`, *optional*): |
|
A dictionary used to configure the model's FFN module. |
|
use_cache (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
|
|
|
|
Example: |
|
```python |
|
>>> from transformers import DbrxConfig, DbrxModel |
|
|
|
>>> # Initializing a Dbrx configuration |
|
>>> configuration = DbrxConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = DbrxModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = 'dbrx' |
|
attribute_map = { |
|
'num_attention_heads': 'n_heads', |
|
'hidden_size': 'd_model', |
|
'num_hidden_layers': 'n_layers', |
|
'max_position_embeddings': 'max_seq_len' |
|
} |
|
|
|
def __init__( |
|
self, |
|
d_model: int = 2048, |
|
n_heads: int = 16, |
|
n_layers: int = 24, |
|
max_seq_len: int = 2048, |
|
vocab_size: int = 32000, |
|
resid_pdrop: float = 0.0, |
|
emb_pdrop: float = 0.0, |
|
attn_config: Optional[DbrxAttentionConfig] = None, |
|
ffn_config: Optional[DbrxFFNConfig] = None, |
|
use_cache: bool = True, |
|
initializer_range: float = 0.02, |
|
output_router_logits: bool = False, |
|
router_aux_loss_coef: float = 0.05, |
|
**kwargs: Any, |
|
): |
|
if attn_config is None: |
|
self.attn_config = DbrxAttentionConfig() |
|
elif isinstance(attn_config, dict): |
|
self.attn_config = DbrxAttentionConfig(**attn_config) |
|
else: |
|
self.attn_config = attn_config |
|
|
|
if ffn_config is None: |
|
self.ffn_config = DbrxFFNConfig() |
|
elif isinstance(ffn_config, dict): |
|
self.ffn_config = DbrxFFNConfig(**ffn_config) |
|
else: |
|
self.ffn_config = ffn_config |
|
|
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.max_seq_len = max_seq_len |
|
self.vocab_size = vocab_size |
|
self.resid_pdrop = resid_pdrop |
|
self.emb_pdrop = emb_pdrop |
|
self.use_cache = use_cache |
|
self.initializer_range = initializer_range |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
|
|
tie_word_embeddings = kwargs.pop('tie_word_embeddings', False) |
|
if tie_word_embeddings: |
|
raise ValueError( |
|
'tie_word_embeddings is not supported for Dbrx models.') |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|