Update README.md
Browse files
README.md
CHANGED
@@ -14,29 +14,73 @@ pipeline_tag: zero-shot-classification
|
|
14 |
library_name: transformers
|
15 |
---
|
16 |
|
17 |
-
# Model Trained Using AutoTrain
|
18 |
-
|
19 |
- Problem type: Text Classification
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
library_name: transformers
|
15 |
---
|
16 |
|
|
|
|
|
17 |
- Problem type: Text Classification
|
18 |
|
19 |
+
# LogicSpine/roberta-base-Address-classifier
|
20 |
+
|
21 |
+
## Model Description
|
22 |
+
`LogicSpine/roberta-base-Address-classifier` is a fine-tuned version of the `cross-encoder/nli-roberta-base` model, specifically designed for address classification tasks using zero-shot learning. It allows you to classify text related to addresses and locations without the need for direct training on every possible label.
|
23 |
+
|
24 |
+
## Model Usage
|
25 |
+
|
26 |
+
### Installation
|
27 |
|
28 |
+
To use this model, you need to install the `transformers` library:
|
29 |
|
30 |
+
```bash
|
31 |
+
pip install transformers torch
|
32 |
+
```
|
33 |
|
34 |
+
### Loading the Model
|
35 |
|
36 |
+
You can easily load and use this model for zero-shot classification using Hugging Face's pipeline API.
|
37 |
|
38 |
+
```
|
39 |
+
from transformers import pipeline
|
40 |
|
41 |
+
# Load the zero-shot classification pipeline with the custom model
|
42 |
+
classifier = pipeline("zero-shot-classification",
|
43 |
+
model="LogicSpine/roberta-base-Address-classifier")
|
44 |
|
45 |
+
# Define your input text and candidate labels
|
46 |
+
text = "Delhi, India"
|
47 |
+
candidate_labels = ["Country", "Department", "Laboratory", "College", "District", "Academy"]
|
48 |
|
49 |
+
# Perform classification
|
50 |
+
result = classifier(text, candidate_labels)
|
51 |
|
52 |
+
# Print the classification result
|
53 |
+
print(result)
|
54 |
+
```
|
55 |
+
|
56 |
+
## Example Output
|
57 |
+
|
58 |
+
```
|
59 |
+
{'labels': ['Country',
|
60 |
+
'District',
|
61 |
+
'Academy',
|
62 |
+
'College',
|
63 |
+
'Department',
|
64 |
+
'Laboratory'],
|
65 |
+
'scores': [0.19237062335014343,
|
66 |
+
0.1802321970462799,
|
67 |
+
0.16583585739135742,
|
68 |
+
0.16354037821292877,
|
69 |
+
0.1526614874601364,
|
70 |
+
0.14535939693450928],
|
71 |
+
'sequence': 'Delhi, India'}
|
72 |
+
```
|
73 |
+
|
74 |
+
## Validation Metrics
|
75 |
|
76 |
+
**loss:** `0.28241145610809326`
|
77 |
+
**f1_macro:** `0.8093855588593053`
|
78 |
+
**f1_micro:** `0.9515418502202643`
|
79 |
+
**f1_weighted:** `0.949198754683482`
|
80 |
+
**precision_macro:** `0.8090277777777778`
|
81 |
+
**precision_micro:** `0.9515418502202643`
|
82 |
+
**precision_weighted:** `0.9473201174743024`
|
83 |
+
**recall_macro:** `0.8100845864661653`
|
84 |
+
**recall_micro:** `0.9515418502202643`
|
85 |
+
**recall_weighted:** `0.9515418502202643`
|
86 |
+
**accuracy:** `0.9515418502202643`
|