5m4ck3r commited on
Commit
a0278f9
·
verified ·
1 Parent(s): fe2d129

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -17
README.md CHANGED
@@ -1,36 +1,84 @@
1
-
2
  ---
3
  tags:
4
- - autotrain
5
  - text-classification
6
  base_model: cross-encoder/nli-roberta-base
7
  widget:
8
- - text: "I love AutoTrain"
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Trained Using AutoTrain
12
 
13
- - Problem type: Text Classification
14
 
15
- ## Validation Metrics
16
- loss: 1.3794080018997192
 
 
 
 
17
 
18
- f1_macro: 0.21842933805832918
19
 
20
- f1_micro: 0.4551574223406493
 
 
21
 
22
- f1_weighted: 0.306703002026862
23
 
24
- precision_macro: 0.19546905037281545
25
 
26
- precision_micro: 0.4551574223406493
 
27
 
28
- precision_weighted: 0.2510467302490216
 
 
29
 
30
- recall_macro: 0.2811753463927377
 
 
31
 
32
- recall_micro: 0.4551574223406493
 
33
 
34
- recall_weighted: 0.4551574223406493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- accuracy: 0.4551574223406493
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
 
3
  - text-classification
4
  base_model: cross-encoder/nli-roberta-base
5
  widget:
6
+ - text: I love AutoTrain
7
+ license: mit
8
+ language:
9
+ - en
10
+ metrics:
11
+ - accuracy
12
+ pipeline_tag: zero-shot-classification
13
+ library_name: transformers
14
  ---
15
 
 
16
 
17
+ # LogicSpine/address-large-text-classifier
18
 
19
+ ## Model Description
20
+ `LogicSpine/address-large-text-classifier` is a fine-tuned version of the `cross-encoder/nli-roberta-base` model, specifically designed for address classification tasks using zero-shot learning. It allows you to classify text related to addresses and locations without the need for direct training on every possible label.
21
+
22
+ ## Model Usage
23
+
24
+ ### Installation
25
 
26
+ To use this model, you need to install the `transformers` library:
27
 
28
+ ```bash
29
+ pip install transformers torch
30
+ ```
31
 
32
+ ### Loading the Model
33
 
34
+ You can easily load and use this model for zero-shot classification using Hugging Face's pipeline API.
35
 
36
+ ```
37
+ from transformers import pipeline
38
 
39
+ # Load the zero-shot classification pipeline with the custom model
40
+ classifier = pipeline("zero-shot-classification",
41
+ model="LogicSpine/address-large-text-classifier")
42
 
43
+ # Define your input text and candidate labels
44
+ text = "Delhi, India"
45
+ candidate_labels = ["Country", "Department", "Laboratory", "College", "District", "Academy"]
46
 
47
+ # Perform classification
48
+ result = classifier(text, candidate_labels)
49
 
50
+ # Print the classification result
51
+ print(result)
52
+ ```
53
+
54
+ ## Example Output
55
+
56
+ ```
57
+ {'labels': ['Country',
58
+ 'District',
59
+ 'Academy',
60
+ 'College',
61
+ 'Department',
62
+ 'Laboratory'],
63
+ 'scores': [0.19237062335014343,
64
+ 0.1802321970462799,
65
+ 0.16583585739135742,
66
+ 0.16354037821292877,
67
+ 0.1526614874601364,
68
+ 0.14535939693450928],
69
+ 'sequence': 'Delhi, India'}
70
+ ```
71
+
72
+ ## Validation Metrics
73
 
74
+ **loss:** 1.3794080018997192
75
+ **f1_macro:** 0.21842933805832918
76
+ **f1_micro:** 0.4551574223406493
77
+ **f1_weighted:** 0.306703002026862
78
+ **precision_macro:** 0.19546905037281545
79
+ **precision_micro:** 0.4551574223406493
80
+ **precision_weighted:** 0.2510467302490216
81
+ **recall_macro:** 0.2811753463927377
82
+ **recall_micro:** 0.4551574223406493
83
+ **recall_weighted:** 0.4551574223406493
84
+ **accuracy:** 0.4551574223406493