Logii33 commited on
Commit
ee2c423
·
verified ·
1 Parent(s): f4ca406

End of training

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: facebook/nllb-200-distilled-600M
3
+ library_name: peft
4
+ license: cc-by-nc-4.0
5
+ metrics:
6
+ - sacrebleu
7
+ tags:
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: nllb-peft_ta-en
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # nllb-peft_ta-en
18
+
19
+ This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 6.7976
22
+ - Sacrebleu: 18.9451
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0001
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 3
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|
54
+ | 6.8564 | 1.0 | 11250 | 6.8023 | 18.4000 |
55
+ | 6.849 | 2.0 | 22500 | 6.7986 | 18.6259 |
56
+ | 6.8576 | 3.0 | 33750 | 6.7976 | 18.9451 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - PEFT 0.12.0
62
+ - Transformers 4.45.0.dev0
63
+ - Pytorch 2.1.1+cu121
64
+ - Datasets 2.20.0
65
+ - Tokenizers 0.19.1