LoneStriker
commited on
Commit
•
00db9b1
1
Parent(s):
be25b99
Upload README.md
Browse files
README.md
CHANGED
@@ -7,16 +7,21 @@ widget:
|
|
7 |
text: hi
|
8 |
output:
|
9 |
text: ' Hello! How can I assist you today?'
|
10 |
-
|
11 |
pipeline_tag: text-generation
|
12 |
---
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
<div align="center">
|
17 |
|
18 |
<p align="center">
|
19 |
-
<img
|
|
|
20 |
</p>
|
21 |
|
22 |
<div style="display: inline-block;">
|
@@ -38,7 +43,7 @@ pipeline_tag: text-generation
|
|
38 |
<div style="display: inline-block;">
|
39 |
|
40 |
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
|
41 |
-
<img src="https://img.shields.io/badge
|
42 |
</a>
|
43 |
|
44 |
</div>
|
@@ -53,7 +58,7 @@ pipeline_tag: text-generation
|
|
53 |
|
54 |
<div style="display: inline-block;">
|
55 |
|
56 |
-
<a rel="noopener nofollow" href="https://github.com/
|
57 |
<img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
|
58 |
</a>
|
59 |
|
@@ -69,54 +74,263 @@ pipeline_tag: text-generation
|
|
69 |
|
70 |
</div>
|
71 |
|
72 |
-
#
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Performance
|
86 |
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
GSM-8K, MATH,
|
91 |
-
专注于衡量模型的知识和思维能力,在这些指标中SUS-Chat-34B模型取得了最先进的表现,我们还额外引入了[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness)测试了SUS-Chat和同类模型在winogrande,
|
92 |
-
hellaswag, arc, truthful-qa的表现, 衡量模型的常识性推理能力和幻觉。
|
93 |
|
94 |
-
|
95 |
|
96 |
-
|
|
97 |
-
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
| OrionStar-34B
|
103 |
-
|
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def chat_template(messages):
|
116 |
history = ""
|
117 |
for message in messages:
|
118 |
match message:
|
119 |
-
case {"role": "
|
120 |
history += f"### Human: {message}\n\n### Assistant: "
|
121 |
case {"role": "assistant", "content": message}:
|
122 |
history += message
|
@@ -132,10 +346,12 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
132 |
|
133 |
messages = [{"role": "user", "content": "hi"}]
|
134 |
|
135 |
-
input_ids = tokenizer.encode(
|
136 |
-
|
|
|
|
|
137 |
response = tokenizer.decode(
|
138 |
-
output_ids[0][input_ids.shape[1] :], skip_special_tokens=
|
139 |
)
|
140 |
|
141 |
messages.append({"role": "assistant", "content": response})
|
@@ -144,25 +360,42 @@ messages.append({"role": "assistant", "content": response})
|
|
144 |
|
145 |
messages.append({"role": "user", "content": "What is the capital of China?"})
|
146 |
|
147 |
-
input_ids = tokenizer.encode(
|
148 |
-
|
|
|
|
|
149 |
response = tokenizer.decode(
|
150 |
-
output_ids[0][input_ids.shape[1] :], skip_special_tokens=
|
151 |
)
|
152 |
|
153 |
messages.append({"role": "assistant", "content": response})
|
154 |
```
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
SUS-Chat
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
#
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
text: hi
|
8 |
output:
|
9 |
text: ' Hello! How can I assist you today?'
|
|
|
10 |
pipeline_tag: text-generation
|
11 |
---
|
12 |
+
# 🐷SUS-Chat: Instruction tuning done right
|
13 |
+
|
14 |
+
<p align="left">
|
15 |
+
<a href="README_CN.md">中文</a>  |  English 
|
16 |
+
</p>
|
17 |
|
18 |
+
<br><br>
|
19 |
|
20 |
<div align="center">
|
21 |
|
22 |
<p align="center">
|
23 |
+
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/sustech.svg?sanitize=true" width="200px">
|
24 |
+
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/ccnl.png?sanitize=true" width="200px">
|
25 |
</p>
|
26 |
|
27 |
<div style="display: inline-block;">
|
|
|
43 |
<div style="display: inline-block;">
|
44 |
|
45 |
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
|
46 |
+
<img src="https://img.shields.io/badge/🤖ModelScope-sustc-blue" style="margin: 0 0;">
|
47 |
</a>
|
48 |
|
49 |
</div>
|
|
|
58 |
|
59 |
<div style="display: inline-block;">
|
60 |
|
61 |
+
<a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
|
62 |
<img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
|
63 |
</a>
|
64 |
|
|
|
74 |
|
75 |
</div>
|
76 |
|
77 |
+
# News
|
78 |
|
79 |
+
- 2023-12-06: Try [SUS-Chat-34B
|
80 |
+
chat-ui](https://huggingface.co/spaces/SUSTech/SUS-Chat-34B).
|
81 |
+
|
82 |
+
- 2023-12-05: SUS-Chat-34B is now available on
|
83 |
+
[ModelScope🤖](https://www.modelscope.cn/models/SUSTC/SUS-Chat-34B/summary)
|
84 |
|
85 |
+
- 2023-12-05: SUS-Chat-34B is ranked 2nd in [Open LLM
|
86 |
+
leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
87 |
+
and surpassed all models under 70B.
|
88 |
|
89 |
+
- 2023-12-01: SUS-Chat-34B is now available on
|
90 |
+
[HuggingFace🤗](https://huggingface.co/SUSTech/SUS-Chat-34B).
|
91 |
|
92 |
+
# Introduction
|
93 |
+
|
94 |
+
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
|
95 |
+
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />
|
96 |
+
|
97 |
+
**SUS-Chat-34B** is a 34B bilingual Chinese-English dialogue model,
|
98 |
+
jointly released by the **[Southern University of Science and
|
99 |
+
Technology](https://huggingface.co/SUSTech)** and
|
100 |
+
**[IDEA-CCNL](https://huggingface.co/IDEA-CCNL)**. This model is based
|
101 |
+
on [`01-ai/Yi-34B`](https://huggingface.co/01-ai/Yi-34B) and has been
|
102 |
+
fine-tuned on millions of high-quality, multilingual instruction data.
|
103 |
+
While maintaining the strong language capabilities of the base model,
|
104 |
+
the SUS-Chat-34B model has improved the model’s response to human
|
105 |
+
instructions through high-quality instruction fine-tuning and excels at
|
106 |
+
imitating human thought processes through chains of thought. It
|
107 |
+
introduces inter-instruction attention sharing in long texts, expanding
|
108 |
+
the window size from 4K to 8K, significantly enhancing the usability of
|
109 |
+
multi-turn dialogues.
|
110 |
+
|
111 |
+
It has surpassed all models of the same size in almost all benchmark
|
112 |
+
tests and is better suited to meet the practical needs of complex
|
113 |
+
multilingual tasks. Compared to larger models, SUS-Chat-34B remains
|
114 |
+
highly competitive and has achieved state-of-the-art performance in our
|
115 |
+
comprehensive evaluations.
|
116 |
+
|
117 |
+
SUS-Chat-34B model has the following highlights:
|
118 |
+
|
119 |
+
1. Large-scale complex instruction following data: Trained with 1.4
|
120 |
+
billion tokens of high-quality complex instruction data, covering
|
121 |
+
Chinese and English, multi-turn dialogues, mathematics, reasoning,
|
122 |
+
and various other types of instruction data;
|
123 |
+
2. Strong performance in general tasks: The SUS-Chat-34B model excels
|
124 |
+
in numerous mainstream Chinese and English tasks, surpassing other
|
125 |
+
open-source instruction fine-tuned models of the same parameter
|
126 |
+
scale. It also competes well against models with larger parameter
|
127 |
+
scales;
|
128 |
+
3. Longer context window and excellent multi-turn dialogue
|
129 |
+
capabilities: Currently, SUS-Chat-34B supports an 8K context window,
|
130 |
+
and is trained with a large amount of multi-turn instruction and
|
131 |
+
single-multi-turn mixed data, demonstrating remarkable capabilities
|
132 |
+
in long-text dialogue information focus and instruction follow-up.
|
133 |
+
|
134 |
+
SUS-Chat powerfully demonstrates that through the right instruction
|
135 |
+
fine-tuning, academic institutions can achieve better performance
|
136 |
+
without increasing model parameters, using open-source datasets and
|
137 |
+
models. This bridges the gap between academia and industry in large
|
138 |
+
language models and opens new possibilities for collaboration between
|
139 |
+
academic and industrial sectors.
|
140 |
|
141 |
# Performance
|
142 |
|
143 |
+
To better evaluate the performance of the SUS-Chat-34B model, we
|
144 |
+
conducted assessments across multiple benchmark tests and have
|
145 |
+
open-sourced the evaluation framework
|
146 |
+
[TLEM](https://huggingface.co/spaces/SUSTech/tlem) to facilitate
|
147 |
+
replication and comparison by other researchers.
|
148 |
+
|
149 |
+
In TLEM, we utilized various benchmark tests including MMLU, CMMLU,
|
150 |
+
C-Eval, BBH, GSM-8K, and MATH, to measure the model’s knowledge and
|
151 |
+
thinking capabilities. In these metrics, the SUS-Chat-34B model achieved
|
152 |
+
state-of-the-art performance. Additionally, we incorporated
|
153 |
+
[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test
|
154 |
+
SUS-Chat and similar models on winogrande, hellaswag, arc, and
|
155 |
+
truthful-qa, assessing the model’s common-sense reasoning ability and
|
156 |
+
susceptibility to illusions.
|
157 |
+
|
158 |
+
Overall, the SUS-Chat-34B model significantly outperformed models of
|
159 |
+
similar scale and achieved the most advanced comprehensive performance.
|
160 |
+
|
161 |
+
<img
|
162 |
+
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
|
163 |
+
id="fig-bench" alt="Figure 2: Benchmark" />
|
164 |
+
|
165 |
+
<div>
|
166 |
+
|
167 |
+
<table>
|
168 |
+
<colgroup>
|
169 |
+
<col style="width: 50%" />
|
170 |
+
<col style="width: 50%" />
|
171 |
+
</colgroup>
|
172 |
+
<tbody>
|
173 |
+
<tr class="odd">
|
174 |
+
<td style="text-align: center;"><div width="50.0%"
|
175 |
+
data-layout-align="center">
|
176 |
+
<h2 id="english-understanding">English Understanding</h2>
|
177 |
+
<table>
|
178 |
+
<thead>
|
179 |
+
<tr class="header">
|
180 |
+
<th style="text-align: right;">Model</th>
|
181 |
+
<th style="text-align: center;">mmlu (0-shot)</th>
|
182 |
+
</tr>
|
183 |
+
</thead>
|
184 |
+
<tbody>
|
185 |
+
<tr class="odd">
|
186 |
+
<td style="text-align: right;">GPT-4</td>
|
187 |
+
<td style="text-align: center;">83</td>
|
188 |
+
</tr>
|
189 |
+
<tr class="even">
|
190 |
+
<td style="text-align: right;">SUS-Chat-34B</td>
|
191 |
+
<td style="text-align: center;"><u>74.35</u></td>
|
192 |
+
</tr>
|
193 |
+
<tr class="odd">
|
194 |
+
<td style="text-align: right;">Qwen-72b-Chat</td>
|
195 |
+
<td style="text-align: center;"><strong>74.52</strong></td>
|
196 |
+
</tr>
|
197 |
+
<tr class="even">
|
198 |
+
<td style="text-align: right;">Deepseek-68b-Chat</td>
|
199 |
+
<td style="text-align: center;">69.43</td>
|
200 |
+
</tr>
|
201 |
+
<tr class="odd">
|
202 |
+
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
|
203 |
+
<td style="text-align: center;">68.51</td>
|
204 |
+
</tr>
|
205 |
+
<tr class="even">
|
206 |
+
<td style="text-align: right;">Yi-34B-Chat</td>
|
207 |
+
<td style="text-align: center;">66.96</td>
|
208 |
+
</tr>
|
209 |
+
</tbody>
|
210 |
+
</table>
|
211 |
+
</div></td>
|
212 |
+
<td style="text-align: center;"><div width="50.0%"
|
213 |
+
data-layout-align="center">
|
214 |
+
<h2 id="chinese-capabilities">Chinese Capabilities</h2>
|
215 |
+
<table>
|
216 |
+
<colgroup>
|
217 |
+
<col style="width: 34%" />
|
218 |
+
<col style="width: 32%" />
|
219 |
+
<col style="width: 32%" />
|
220 |
+
</colgroup>
|
221 |
+
<thead>
|
222 |
+
<tr class="header">
|
223 |
+
<th style="text-align: right;">Model</th>
|
224 |
+
<th style="text-align: center;">cmmlu (0-shot)</th>
|
225 |
+
<th style="text-align: center;">C-Eval (0-shot)<a href="#fn1"
|
226 |
+
class="footnote-ref" id="fnref1"
|
227 |
+
role="doc-noteref"><sup>1</sup></a></th>
|
228 |
+
</tr>
|
229 |
+
</thead>
|
230 |
+
<tbody>
|
231 |
+
<tr class="odd">
|
232 |
+
<td style="text-align: right;">GPT-4</td>
|
233 |
+
<td style="text-align: center;">71</td>
|
234 |
+
<td style="text-align: center;">69.9</td>
|
235 |
+
</tr>
|
236 |
+
<tr class="even">
|
237 |
+
<td style="text-align: right;">SUS-Chat-34B</td>
|
238 |
+
<td style="text-align: center;"><strong>78.68</strong></td>
|
239 |
+
<td style="text-align: center;"><strong>82.42</strong></td>
|
240 |
+
</tr>
|
241 |
+
<tr class="odd">
|
242 |
+
<td style="text-align: right;">Qwen-72b-Chat</td>
|
243 |
+
<td style="text-align: center;"><u>77.02</u></td>
|
244 |
+
<td style="text-align: center;"><u>77.22</u></td>
|
245 |
+
</tr>
|
246 |
+
<tr class="even">
|
247 |
+
<td style="text-align: right;">Deepseek-68b-Chat</td>
|
248 |
+
<td style="text-align: center;">48.51</td>
|
249 |
+
<td style="text-align: center;">59.7</td>
|
250 |
+
</tr>
|
251 |
+
<tr class="odd">
|
252 |
+
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
|
253 |
+
<td style="text-align: center;">66.88</td>
|
254 |
+
<td style="text-align: center;">65.13</td>
|
255 |
+
</tr>
|
256 |
+
<tr class="even">
|
257 |
+
<td style="text-align: right;">Yi-34B-Chat</td>
|
258 |
+
<td style="text-align: center;">55.16</td>
|
259 |
+
<td style="text-align: center;">77.16</td>
|
260 |
+
</tr>
|
261 |
+
</tbody>
|
262 |
+
</table>
|
263 |
+
</div></td>
|
264 |
+
</tr>
|
265 |
+
</tbody>
|
266 |
+
</table>
|
267 |
+
<section id="footnotes" class="footnotes footnotes-end-of-document"
|
268 |
+
role="doc-endnotes">
|
269 |
+
<hr />
|
270 |
+
<ol>
|
271 |
+
<li id="fn1"><p>C-Eval results are evaluated on the validation
|
272 |
+
datasets<a href="#fnref1" class="footnote-back"
|
273 |
+
role="doc-backlink">↩︎</a></p></li>
|
274 |
+
</ol>
|
275 |
+
</section>
|
276 |
|
277 |
+
</div>
|
|
|
|
|
|
|
278 |
|
279 |
+
## Math & Reasoning
|
280 |
|
281 |
+
| Model | gsm8k (0-shot) | MATH (0-shot) | BBH (0-shot) |
|
282 |
+
|----------------------:|:--------------:|:-------------:|:------------:|
|
283 |
+
| GPT-4 | 91.4 | 45.8 | 86.7 |
|
284 |
+
| SUS-Chat-34B | **80.06** | 28.7 | 67.62 |
|
285 |
+
| Qwen-72b-Chat | <u>76.57</u> | **35.9** | **72.63** |
|
286 |
+
| Deepseek-68b-Chat | 74.45 | <u>29.56</u> | <u>69.73</u> |
|
287 |
+
| OrionStar-Yi-34B-Chat | 54.36 | 12.8 | 62.88 |
|
288 |
+
| Yi-34B-Chat | 63.76 | 10.02 | 61.54 |
|
289 |
|
290 |
+
## More Tasks
|
291 |
|
292 |
+
| Model | winogrande (5-shot) | arc (25-shot) | hellaswag (10-shot) | TruthfulQA mc1 (0-shot) | TruthfulQA mc2 (0-shot) |
|
293 |
+
|----------------------:|:-------------------:|:-------------:|:-------------------:|:-----------------------:|:-----------------------:|
|
294 |
+
| GPT-4 | — | 94.5 | 91.4 | 59.00 | — |
|
295 |
+
| SUS-Chat-34B | **81.22** | <u>81.54</u> | 83.79 | **40.64** | **57.47** |
|
296 |
+
| Qwen-72b-Chat | 76.09 | **82.10** | <u>86.06</u> | 39.17 | <u>56.37</u> |
|
297 |
+
| Deepseek-68b-Chat | <u>80.58</u> | 81.29 | **87.02** | <u>40.02</u> | 50.64 |
|
298 |
+
| OrionStar-Yi-34B-Chat | 77.27 | 80.19 | 84.54 | 36.47 | 53.24 |
|
299 |
+
| Yi-34B-Chat | 76.64 | 70.66 | 82.29 | 38.19 | 54.57 |
|
300 |
|
301 |
+
## Overall
|
302 |
|
303 |
+
| Model | Average |
|
304 |
+
|----------------------:|:---------:|
|
305 |
+
| SUS-Chat-34B | **69.05** |
|
306 |
+
| Qwen-72b-Chat | 68.41 |
|
307 |
+
| Deepseek-68b-Chat | 62.91 |
|
308 |
+
| OrionStar-Yi-34B-Chat | 60.21 |
|
309 |
+
| Yi-34B-Chat | 59.72 |
|
310 |
|
311 |
+
To reproduce the results, please start a corresponding vllm server and
|
312 |
+
refer to
|
313 |
+
[here](https://sustech-tlem.static.hf.space/index.html#start-evaluating-your-model-in-3-line).
|
314 |
+
|
315 |
+
# Usage
|
316 |
+
|
317 |
+
SUS-Chat-34B is a standard LLaMA model and should be seamlessly
|
318 |
+
compatible with the LLaMA ecosystem. We provide the following example to
|
319 |
+
demonstrate how it can be used for multi-turn dialogues.
|
320 |
+
|
321 |
+
Feel free to [open an
|
322 |
+
issue](https://github.com/SUSTech-IDEA/SUS-Chat/issues) if you have any
|
323 |
+
questions.
|
324 |
+
|
325 |
+
``` python
|
326 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer # 🤗 Transformers, or
|
327 |
+
# from modelscope import AutoModelForCausalLM, AutoTokenizer # 🤖 ModelScope
|
328 |
|
329 |
def chat_template(messages):
|
330 |
history = ""
|
331 |
for message in messages:
|
332 |
match message:
|
333 |
+
case {"role": "user", "content": message}:
|
334 |
history += f"### Human: {message}\n\n### Assistant: "
|
335 |
case {"role": "assistant", "content": message}:
|
336 |
history += message
|
|
|
346 |
|
347 |
messages = [{"role": "user", "content": "hi"}]
|
348 |
|
349 |
+
input_ids = tokenizer.encode(
|
350 |
+
chat_template(messages), return_tensors="pt", add_special_tokens=False
|
351 |
+
).to("cuda")
|
352 |
+
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
|
353 |
response = tokenizer.decode(
|
354 |
+
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
|
355 |
)
|
356 |
|
357 |
messages.append({"role": "assistant", "content": response})
|
|
|
360 |
|
361 |
messages.append({"role": "user", "content": "What is the capital of China?"})
|
362 |
|
363 |
+
input_ids = tokenizer.encode(
|
364 |
+
chat_template(messages), return_tensors="pt", add_special_tokens=False
|
365 |
+
).to("cuda")
|
366 |
+
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
|
367 |
response = tokenizer.decode(
|
368 |
+
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
|
369 |
)
|
370 |
|
371 |
messages.append({"role": "assistant", "content": response})
|
372 |
```
|
373 |
|
374 |
+
# Limitations
|
375 |
+
|
376 |
+
SUS-Chat has only undergone supervised fine-tuning and has not yet been
|
377 |
+
trained on human preference learning. As a result, it may produce
|
378 |
+
unreasonable responses in some situations and exacerbate existing issues
|
379 |
+
in language models, including hallucinations, non-determinism, and
|
380 |
+
cumulative errors. To achieve better performance for downstream tasks,
|
381 |
+
we recommend adjusting the generation configuration parameters
|
382 |
+
accordingly.
|
383 |
+
|
384 |
+
# Disclaimer
|
385 |
+
|
386 |
+
During the training process, we used data compliance check algorithms to
|
387 |
+
ensure the compliance of the training model as much as possible. Due to
|
388 |
+
the complexity of the data and the diverse use cases of language models,
|
389 |
+
we cannot guarantee that the model will produce correct and reasonable
|
390 |
+
outputs in all scenarios. Please be aware that there is still a risk of
|
391 |
+
the model generating problematic outputs. We will not be responsible for
|
392 |
+
any risks or issues arising from misuse, misguidance, illegal use, and
|
393 |
+
related misinformation, as well as data security issues related to the
|
394 |
+
model.
|
395 |
+
|
396 |
+
# License
|
397 |
+
|
398 |
+
This model is developed entirely for academic research and free
|
399 |
+
commercial use, but it must adhere to the
|
400 |
+
[license](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
|
401 |
+
from [01-ai](https://huggingface.co/01-ai).
|