phi3-sto-iter0-v2 / trainer_log.jsonl
LordNoah's picture
update
b2f6182
{"current_steps": 5, "total_steps": 1824, "loss": 1.79, "accuracy": 0.2800000011920929, "learning_rate": 1.358695652173913e-08, "epoch": 0.00821827744904668, "percentage": 0.27, "elapsed_time": "0:03:33", "remaining_time": "21:32:03"}
{"current_steps": 10, "total_steps": 1824, "loss": 1.7672, "accuracy": 0.6100000143051147, "learning_rate": 2.717391304347826e-08, "epoch": 0.01643655489809336, "percentage": 0.55, "elapsed_time": "0:07:01", "remaining_time": "21:13:01"}
{"current_steps": 15, "total_steps": 1824, "loss": 1.6603, "accuracy": 0.8799999952316284, "learning_rate": 4.076086956521739e-08, "epoch": 0.02465483234714004, "percentage": 0.82, "elapsed_time": "0:10:30", "remaining_time": "21:07:02"}
{"current_steps": 20, "total_steps": 1824, "loss": 1.5519, "accuracy": 0.9300000071525574, "learning_rate": 5.434782608695652e-08, "epoch": 0.03287310979618672, "percentage": 1.1, "elapsed_time": "0:13:58", "remaining_time": "21:00:24"}
{"current_steps": 25, "total_steps": 1824, "loss": 1.4535, "accuracy": 0.9300000071525574, "learning_rate": 6.793478260869565e-08, "epoch": 0.041091387245233396, "percentage": 1.37, "elapsed_time": "0:17:26", "remaining_time": "20:55:29"}
{"current_steps": 30, "total_steps": 1824, "loss": 1.3598, "accuracy": 0.9399999976158142, "learning_rate": 8.152173913043478e-08, "epoch": 0.04930966469428008, "percentage": 1.64, "elapsed_time": "0:20:56", "remaining_time": "20:52:25"}
{"current_steps": 35, "total_steps": 1824, "loss": 1.2944, "accuracy": 0.9200000166893005, "learning_rate": 9.510869565217392e-08, "epoch": 0.05752794214332676, "percentage": 1.92, "elapsed_time": "0:24:26", "remaining_time": "20:49:00"}
{"current_steps": 40, "total_steps": 1824, "loss": 1.2027, "accuracy": 0.9599999785423279, "learning_rate": 1.0869565217391303e-07, "epoch": 0.06574621959237344, "percentage": 2.19, "elapsed_time": "0:27:54", "remaining_time": "20:44:32"}
{"current_steps": 45, "total_steps": 1824, "loss": 1.1328, "accuracy": 0.949999988079071, "learning_rate": 1.2228260869565216e-07, "epoch": 0.07396449704142012, "percentage": 2.47, "elapsed_time": "0:31:22", "remaining_time": "20:40:31"}
{"current_steps": 50, "total_steps": 1824, "loss": 1.0599, "accuracy": 0.9900000095367432, "learning_rate": 1.358695652173913e-07, "epoch": 0.08218277449046679, "percentage": 2.74, "elapsed_time": "0:34:51", "remaining_time": "20:36:57"}
{"current_steps": 55, "total_steps": 1824, "loss": 1.0223, "accuracy": 0.9599999785423279, "learning_rate": 1.4945652173913042e-07, "epoch": 0.09040105193951348, "percentage": 3.02, "elapsed_time": "0:38:19", "remaining_time": "20:32:34"}
{"current_steps": 60, "total_steps": 1824, "loss": 1.0046, "accuracy": 0.9599999785423279, "learning_rate": 1.6304347826086955e-07, "epoch": 0.09861932938856016, "percentage": 3.29, "elapsed_time": "0:41:49", "remaining_time": "20:29:24"}
{"current_steps": 65, "total_steps": 1824, "loss": 0.9338, "accuracy": 0.949999988079071, "learning_rate": 1.766304347826087e-07, "epoch": 0.10683760683760683, "percentage": 3.56, "elapsed_time": "0:45:20", "remaining_time": "20:26:53"}
{"current_steps": 70, "total_steps": 1824, "loss": 0.8671, "accuracy": 0.9599999785423279, "learning_rate": 1.9021739130434784e-07, "epoch": 0.11505588428665352, "percentage": 3.84, "elapsed_time": "0:48:47", "remaining_time": "20:22:41"}
{"current_steps": 75, "total_steps": 1824, "loss": 0.8076, "accuracy": 0.9800000190734863, "learning_rate": 2.0380434782608694e-07, "epoch": 0.1232741617357002, "percentage": 4.11, "elapsed_time": "0:52:18", "remaining_time": "20:19:59"}
{"current_steps": 80, "total_steps": 1824, "loss": 0.842, "accuracy": 0.9399999976158142, "learning_rate": 2.1739130434782607e-07, "epoch": 0.13149243918474687, "percentage": 4.39, "elapsed_time": "0:55:49", "remaining_time": "20:16:49"}
{"current_steps": 85, "total_steps": 1824, "loss": 0.7489, "accuracy": 0.9700000286102295, "learning_rate": 2.309782608695652e-07, "epoch": 0.13971071663379356, "percentage": 4.66, "elapsed_time": "0:59:17", "remaining_time": "20:13:04"}
{"current_steps": 90, "total_steps": 1824, "loss": 0.8269, "accuracy": 0.9700000286102295, "learning_rate": 2.445652173913043e-07, "epoch": 0.14792899408284024, "percentage": 4.93, "elapsed_time": "1:02:46", "remaining_time": "20:09:19"}
{"current_steps": 95, "total_steps": 1824, "loss": 0.8771, "accuracy": 0.9100000262260437, "learning_rate": 2.499981493451693e-07, "epoch": 0.15614727153188693, "percentage": 5.21, "elapsed_time": "1:06:13", "remaining_time": "20:05:17"}
{"current_steps": 100, "total_steps": 1824, "loss": 0.7676, "accuracy": 0.9200000166893005, "learning_rate": 2.499868399863186e-07, "epoch": 0.16436554898093358, "percentage": 5.48, "elapsed_time": "1:09:41", "remaining_time": "20:01:27"}
{"current_steps": 105, "total_steps": 1824, "loss": 0.7133, "accuracy": 0.9300000071525574, "learning_rate": 2.4996525033926786e-07, "epoch": 0.17258382642998027, "percentage": 5.76, "elapsed_time": "1:13:10", "remaining_time": "19:58:04"}
{"current_steps": 110, "total_steps": 1824, "loss": 0.7642, "accuracy": 0.9399999976158142, "learning_rate": 2.499333821797864e-07, "epoch": 0.18080210387902695, "percentage": 6.03, "elapsed_time": "1:16:39", "remaining_time": "19:54:22"}
{"current_steps": 115, "total_steps": 1824, "loss": 0.7483, "accuracy": 0.949999988079071, "learning_rate": 2.4989123812906105e-07, "epoch": 0.18902038132807364, "percentage": 6.3, "elapsed_time": "1:20:06", "remaining_time": "19:50:33"}
{"current_steps": 120, "total_steps": 1824, "loss": 0.7063, "accuracy": 0.8799999952316284, "learning_rate": 2.498388216534807e-07, "epoch": 0.19723865877712032, "percentage": 6.58, "elapsed_time": "1:23:35", "remaining_time": "19:46:58"}
{"current_steps": 125, "total_steps": 1824, "loss": 0.7148, "accuracy": 0.949999988079071, "learning_rate": 2.49776137064351e-07, "epoch": 0.205456936226167, "percentage": 6.85, "elapsed_time": "1:27:04", "remaining_time": "19:43:24"}
{"current_steps": 130, "total_steps": 1824, "loss": 0.6619, "accuracy": 0.9800000190734863, "learning_rate": 2.4970318951754e-07, "epoch": 0.21367521367521367, "percentage": 7.13, "elapsed_time": "1:30:32", "remaining_time": "19:39:51"}
{"current_steps": 135, "total_steps": 1824, "loss": 0.7109, "accuracy": 0.9700000286102295, "learning_rate": 2.496199850130537e-07, "epoch": 0.22189349112426035, "percentage": 7.4, "elapsed_time": "1:34:01", "remaining_time": "19:36:20"}
{"current_steps": 140, "total_steps": 1824, "loss": 0.703, "accuracy": 0.9300000071525574, "learning_rate": 2.4952653039454297e-07, "epoch": 0.23011176857330704, "percentage": 7.68, "elapsed_time": "1:37:30", "remaining_time": "19:32:50"}
{"current_steps": 145, "total_steps": 1824, "loss": 0.6182, "accuracy": 0.949999988079071, "learning_rate": 2.494228333487403e-07, "epoch": 0.23833004602235372, "percentage": 7.95, "elapsed_time": "1:40:58", "remaining_time": "19:29:08"}
{"current_steps": 150, "total_steps": 1824, "loss": 0.671, "accuracy": 0.949999988079071, "learning_rate": 2.4930890240482784e-07, "epoch": 0.2465483234714004, "percentage": 8.22, "elapsed_time": "1:44:27", "remaining_time": "19:25:39"}
{"current_steps": 155, "total_steps": 1824, "loss": 0.6461, "accuracy": 0.9200000166893005, "learning_rate": 2.491847469337356e-07, "epoch": 0.25476660092044706, "percentage": 8.5, "elapsed_time": "1:47:56", "remaining_time": "19:22:20"}
{"current_steps": 160, "total_steps": 1824, "loss": 0.7398, "accuracy": 0.9700000286102295, "learning_rate": 2.4905037714737094e-07, "epoch": 0.26298487836949375, "percentage": 8.77, "elapsed_time": "1:51:25", "remaining_time": "19:18:44"}
{"current_steps": 165, "total_steps": 1824, "loss": 0.6633, "accuracy": 0.949999988079071, "learning_rate": 2.489058040977784e-07, "epoch": 0.27120315581854043, "percentage": 9.05, "elapsed_time": "1:54:53", "remaining_time": "19:15:10"}
{"current_steps": 170, "total_steps": 1824, "loss": 0.6512, "accuracy": 0.9700000286102295, "learning_rate": 2.487510396762309e-07, "epoch": 0.2794214332675871, "percentage": 9.32, "elapsed_time": "1:58:21", "remaining_time": "19:11:37"}
{"current_steps": 175, "total_steps": 1824, "loss": 0.6218, "accuracy": 0.9700000286102295, "learning_rate": 2.485860966122514e-07, "epoch": 0.2876397107166338, "percentage": 9.59, "elapsed_time": "2:01:50", "remaining_time": "19:08:03"}
{"current_steps": 180, "total_steps": 1824, "loss": 0.6908, "accuracy": 0.949999988079071, "learning_rate": 2.484109884725661e-07, "epoch": 0.2958579881656805, "percentage": 9.87, "elapsed_time": "2:05:20", "remaining_time": "19:04:43"}
{"current_steps": 185, "total_steps": 1824, "loss": 0.6008, "accuracy": 0.9599999785423279, "learning_rate": 2.4822572965998844e-07, "epoch": 0.30407626561472717, "percentage": 10.14, "elapsed_time": "2:08:48", "remaining_time": "19:01:11"}
{"current_steps": 190, "total_steps": 1824, "loss": 0.6281, "accuracy": 0.9599999785423279, "learning_rate": 2.4803033541223455e-07, "epoch": 0.31229454306377386, "percentage": 10.42, "elapsed_time": "2:12:16", "remaining_time": "18:57:37"}
{"current_steps": 195, "total_steps": 1824, "loss": 0.6158, "accuracy": 0.9700000286102295, "learning_rate": 2.478248218006699e-07, "epoch": 0.32051282051282054, "percentage": 10.69, "elapsed_time": "2:15:46", "remaining_time": "18:54:13"}
{"current_steps": 200, "total_steps": 1824, "loss": 0.6044, "accuracy": 0.9700000286102295, "learning_rate": 2.476092057289873e-07, "epoch": 0.32873109796186717, "percentage": 10.96, "elapsed_time": "2:19:14", "remaining_time": "18:50:39"}
{"current_steps": 205, "total_steps": 1824, "loss": 0.6532, "accuracy": 0.9599999785423279, "learning_rate": 2.473835049318167e-07, "epoch": 0.33694937541091385, "percentage": 11.24, "elapsed_time": "2:22:44", "remaining_time": "18:47:16"}
{"current_steps": 210, "total_steps": 1824, "loss": 0.6183, "accuracy": 0.9700000286102295, "learning_rate": 2.4714773797326657e-07, "epoch": 0.34516765285996054, "percentage": 11.51, "elapsed_time": "2:26:12", "remaining_time": "18:43:42"}
{"current_steps": 215, "total_steps": 1824, "loss": 0.6071, "accuracy": 0.9900000095367432, "learning_rate": 2.4690192424539663e-07, "epoch": 0.3533859303090072, "percentage": 11.79, "elapsed_time": "2:29:40", "remaining_time": "18:40:05"}
{"current_steps": 220, "total_steps": 1824, "loss": 0.562, "accuracy": 0.9700000286102295, "learning_rate": 2.466460839666233e-07, "epoch": 0.3616042077580539, "percentage": 12.06, "elapsed_time": "2:33:09", "remaining_time": "18:36:42"}
{"current_steps": 225, "total_steps": 1824, "loss": 0.6343, "accuracy": 0.9900000095367432, "learning_rate": 2.463802381800563e-07, "epoch": 0.3698224852071006, "percentage": 12.34, "elapsed_time": "2:36:37", "remaining_time": "18:33:03"}
{"current_steps": 230, "total_steps": 1824, "loss": 0.59, "accuracy": 0.9700000286102295, "learning_rate": 2.461044087517682e-07, "epoch": 0.3780407626561473, "percentage": 12.61, "elapsed_time": "2:40:05", "remaining_time": "18:29:30"}
{"current_steps": 235, "total_steps": 1824, "loss": 0.6427, "accuracy": 0.9200000166893005, "learning_rate": 2.458186183689957e-07, "epoch": 0.38625904010519396, "percentage": 12.88, "elapsed_time": "2:43:34", "remaining_time": "18:26:01"}
{"current_steps": 240, "total_steps": 1824, "loss": 0.5599, "accuracy": 0.9399999976158142, "learning_rate": 2.4552289053827344e-07, "epoch": 0.39447731755424065, "percentage": 13.16, "elapsed_time": "2:47:02", "remaining_time": "18:22:28"}
{"current_steps": 245, "total_steps": 1824, "loss": 0.6344, "accuracy": 0.9200000166893005, "learning_rate": 2.4521724958350093e-07, "epoch": 0.40269559500328733, "percentage": 13.43, "elapsed_time": "2:50:30", "remaining_time": "18:18:54"}
{"current_steps": 250, "total_steps": 1824, "loss": 0.5475, "accuracy": 0.9900000095367432, "learning_rate": 2.449017206439417e-07, "epoch": 0.410913872452334, "percentage": 13.71, "elapsed_time": "2:53:59", "remaining_time": "18:15:24"}
{"current_steps": 255, "total_steps": 1824, "loss": 0.6424, "accuracy": 0.9700000286102295, "learning_rate": 2.445763296721554e-07, "epoch": 0.41913214990138065, "percentage": 13.98, "elapsed_time": "2:57:26", "remaining_time": "18:11:47"}
{"current_steps": 260, "total_steps": 1824, "loss": 0.6183, "accuracy": 0.9300000071525574, "learning_rate": 2.4424110343186345e-07, "epoch": 0.42735042735042733, "percentage": 14.25, "elapsed_time": "3:00:55", "remaining_time": "18:08:19"}
{"current_steps": 265, "total_steps": 1824, "loss": 0.5961, "accuracy": 0.9800000190734863, "learning_rate": 2.4389606949574767e-07, "epoch": 0.435568704799474, "percentage": 14.53, "elapsed_time": "3:04:26", "remaining_time": "18:05:07"}
{"current_steps": 270, "total_steps": 1824, "loss": 0.547, "accuracy": 0.9200000166893005, "learning_rate": 2.435412562431823e-07, "epoch": 0.4437869822485207, "percentage": 14.8, "elapsed_time": "3:07:55", "remaining_time": "18:01:37"}
{"current_steps": 275, "total_steps": 1824, "loss": 0.5759, "accuracy": 0.9200000166893005, "learning_rate": 2.4317669285789964e-07, "epoch": 0.4520052596975674, "percentage": 15.08, "elapsed_time": "3:11:23", "remaining_time": "17:58:05"}
{"current_steps": 280, "total_steps": 1824, "loss": 0.6028, "accuracy": 0.9599999785423279, "learning_rate": 2.428024093255901e-07, "epoch": 0.46022353714661407, "percentage": 15.35, "elapsed_time": "3:14:55", "remaining_time": "17:54:52"}
{"current_steps": 285, "total_steps": 1824, "loss": 0.5687, "accuracy": 0.949999988079071, "learning_rate": 2.424184364314352e-07, "epoch": 0.46844181459566075, "percentage": 15.62, "elapsed_time": "3:18:24", "remaining_time": "17:51:24"}
{"current_steps": 290, "total_steps": 1824, "loss": 0.5783, "accuracy": 0.9700000286102295, "learning_rate": 2.420248057575761e-07, "epoch": 0.47666009204470744, "percentage": 15.9, "elapsed_time": "3:21:53", "remaining_time": "17:47:53"}
{"current_steps": 295, "total_steps": 1824, "loss": 0.5665, "accuracy": 0.9700000286102295, "learning_rate": 2.416215496805156e-07, "epoch": 0.4848783694937541, "percentage": 16.17, "elapsed_time": "3:25:21", "remaining_time": "17:44:24"}
{"current_steps": 300, "total_steps": 1824, "loss": 0.6409, "accuracy": 0.9800000190734863, "learning_rate": 2.412087013684552e-07, "epoch": 0.4930966469428008, "percentage": 16.45, "elapsed_time": "3:28:50", "remaining_time": "17:40:57"}
{"current_steps": 305, "total_steps": 1824, "loss": 0.487, "accuracy": 0.9800000190734863, "learning_rate": 2.407862947785669e-07, "epoch": 0.5013149243918474, "percentage": 16.72, "elapsed_time": "3:32:19", "remaining_time": "17:37:24"}
{"current_steps": 310, "total_steps": 1824, "loss": 0.6388, "accuracy": 0.9700000286102295, "learning_rate": 2.403543646542003e-07, "epoch": 0.5095332018408941, "percentage": 17.0, "elapsed_time": "3:35:48", "remaining_time": "17:33:58"}
{"current_steps": 315, "total_steps": 1824, "loss": 0.5741, "accuracy": 0.9700000286102295, "learning_rate": 2.39912946522025e-07, "epoch": 0.5177514792899408, "percentage": 17.27, "elapsed_time": "3:39:16", "remaining_time": "17:30:26"}
{"current_steps": 320, "total_steps": 1824, "loss": 0.5869, "accuracy": 0.9200000166893005, "learning_rate": 2.3946207668910833e-07, "epoch": 0.5259697567389875, "percentage": 17.54, "elapsed_time": "3:42:45", "remaining_time": "17:26:56"}
{"current_steps": 325, "total_steps": 1824, "loss": 0.6145, "accuracy": 0.949999988079071, "learning_rate": 2.390017922399292e-07, "epoch": 0.5341880341880342, "percentage": 17.82, "elapsed_time": "3:46:13", "remaining_time": "17:23:22"}
{"current_steps": 330, "total_steps": 1824, "loss": 0.6284, "accuracy": 0.9100000262260437, "learning_rate": 2.385321310333276e-07, "epoch": 0.5424063116370809, "percentage": 18.09, "elapsed_time": "3:49:41", "remaining_time": "17:19:54"}
{"current_steps": 335, "total_steps": 1824, "loss": 0.5688, "accuracy": 0.949999988079071, "learning_rate": 2.38053131699391e-07, "epoch": 0.5506245890861275, "percentage": 18.37, "elapsed_time": "3:53:10", "remaining_time": "17:16:24"}
{"current_steps": 340, "total_steps": 1824, "loss": 0.5981, "accuracy": 0.9700000286102295, "learning_rate": 2.3756483363627694e-07, "epoch": 0.5588428665351742, "percentage": 18.64, "elapsed_time": "3:56:38", "remaining_time": "17:12:50"}
{"current_steps": 345, "total_steps": 1824, "loss": 0.5567, "accuracy": 0.9800000190734863, "learning_rate": 2.3706727700697226e-07, "epoch": 0.5670611439842209, "percentage": 18.91, "elapsed_time": "4:00:06", "remaining_time": "17:09:20"}
{"current_steps": 350, "total_steps": 1824, "loss": 0.5363, "accuracy": 0.9599999785423279, "learning_rate": 2.3656050273598986e-07, "epoch": 0.5752794214332676, "percentage": 19.19, "elapsed_time": "4:03:35", "remaining_time": "17:05:53"}
{"current_steps": 355, "total_steps": 1824, "loss": 0.516, "accuracy": 0.949999988079071, "learning_rate": 2.3604455250600256e-07, "epoch": 0.5834976988823143, "percentage": 19.46, "elapsed_time": "4:07:03", "remaining_time": "17:02:21"}
{"current_steps": 360, "total_steps": 1824, "loss": 0.586, "accuracy": 1.0, "learning_rate": 2.3551946875441467e-07, "epoch": 0.591715976331361, "percentage": 19.74, "elapsed_time": "4:10:32", "remaining_time": "16:58:51"}
{"current_steps": 365, "total_steps": 1824, "loss": 0.6121, "accuracy": 0.9700000286102295, "learning_rate": 2.3498529466987147e-07, "epoch": 0.5999342537804077, "percentage": 20.01, "elapsed_time": "4:14:01", "remaining_time": "16:55:25"}
{"current_steps": 370, "total_steps": 1824, "loss": 0.5471, "accuracy": 0.9100000262260437, "learning_rate": 2.3444207418870688e-07, "epoch": 0.6081525312294543, "percentage": 20.29, "elapsed_time": "4:17:31", "remaining_time": "16:52:01"}
{"current_steps": 375, "total_steps": 1824, "loss": 0.5578, "accuracy": 0.949999988079071, "learning_rate": 2.3388985199132962e-07, "epoch": 0.616370808678501, "percentage": 20.56, "elapsed_time": "4:20:59", "remaining_time": "16:48:28"}
{"current_steps": 380, "total_steps": 1824, "loss": 0.6283, "accuracy": 0.949999988079071, "learning_rate": 2.3332867349854844e-07, "epoch": 0.6245890861275477, "percentage": 20.83, "elapsed_time": "4:24:29", "remaining_time": "16:45:05"}
{"current_steps": 385, "total_steps": 1824, "loss": 0.5824, "accuracy": 0.9599999785423279, "learning_rate": 2.3275858486783578e-07, "epoch": 0.6328073635765944, "percentage": 21.11, "elapsed_time": "4:27:58", "remaining_time": "16:41:34"}
{"current_steps": 390, "total_steps": 1824, "loss": 0.5813, "accuracy": 0.9700000286102295, "learning_rate": 2.321796329895317e-07, "epoch": 0.6410256410256411, "percentage": 21.38, "elapsed_time": "4:31:26", "remaining_time": "16:38:03"}
{"current_steps": 395, "total_steps": 1824, "loss": 0.5278, "accuracy": 0.949999988079071, "learning_rate": 2.3159186548298688e-07, "epoch": 0.6492439184746877, "percentage": 21.66, "elapsed_time": "4:34:54", "remaining_time": "16:34:33"}
{"current_steps": 400, "total_steps": 1824, "loss": 0.5419, "accuracy": 0.9399999976158142, "learning_rate": 2.3099533069264594e-07, "epoch": 0.6574621959237343, "percentage": 21.93, "elapsed_time": "4:38:23", "remaining_time": "16:31:03"}
{"current_steps": 405, "total_steps": 1824, "loss": 0.581, "accuracy": 0.9700000286102295, "learning_rate": 2.3039007768407098e-07, "epoch": 0.665680473372781, "percentage": 22.2, "elapsed_time": "4:41:51", "remaining_time": "16:27:33"}
{"current_steps": 410, "total_steps": 1824, "loss": 0.555, "accuracy": 0.9700000286102295, "learning_rate": 2.2977615623990603e-07, "epoch": 0.6738987508218277, "percentage": 22.48, "elapsed_time": "4:45:20", "remaining_time": "16:24:04"}
{"current_steps": 415, "total_steps": 1824, "loss": 0.5501, "accuracy": 0.9700000286102295, "learning_rate": 2.2915361685578235e-07, "epoch": 0.6821170282708744, "percentage": 22.75, "elapsed_time": "4:48:49", "remaining_time": "16:20:37"}
{"current_steps": 420, "total_steps": 1824, "loss": 0.4948, "accuracy": 0.9700000286102295, "learning_rate": 2.2852251073616503e-07, "epoch": 0.6903353057199211, "percentage": 23.03, "elapsed_time": "4:52:19", "remaining_time": "16:17:12"}
{"current_steps": 425, "total_steps": 1824, "loss": 0.5473, "accuracy": 0.9399999976158142, "learning_rate": 2.2788288979014132e-07, "epoch": 0.6985535831689678, "percentage": 23.3, "elapsed_time": "4:55:47", "remaining_time": "16:13:41"}
{"current_steps": 430, "total_steps": 1824, "loss": 0.5712, "accuracy": 0.8899999856948853, "learning_rate": 2.2723480662715134e-07, "epoch": 0.7067718606180144, "percentage": 23.57, "elapsed_time": "4:59:17", "remaining_time": "16:10:14"}
{"current_steps": 435, "total_steps": 1824, "loss": 0.6137, "accuracy": 0.9399999976158142, "learning_rate": 2.2657831455266063e-07, "epoch": 0.7149901380670611, "percentage": 23.85, "elapsed_time": "5:02:44", "remaining_time": "16:06:41"}
{"current_steps": 440, "total_steps": 1824, "loss": 0.5325, "accuracy": 0.9399999976158142, "learning_rate": 2.2591346756377588e-07, "epoch": 0.7232084155161078, "percentage": 24.12, "elapsed_time": "5:06:14", "remaining_time": "16:03:14"}
{"current_steps": 445, "total_steps": 1824, "loss": 0.5582, "accuracy": 0.9800000190734863, "learning_rate": 2.252403203448034e-07, "epoch": 0.7314266929651545, "percentage": 24.4, "elapsed_time": "5:09:42", "remaining_time": "15:59:43"}
{"current_steps": 450, "total_steps": 1824, "loss": 0.5556, "accuracy": 0.9700000286102295, "learning_rate": 2.2455892826275155e-07, "epoch": 0.7396449704142012, "percentage": 24.67, "elapsed_time": "5:13:11", "remaining_time": "15:56:15"}
{"current_steps": 455, "total_steps": 1824, "loss": 0.577, "accuracy": 0.9399999976158142, "learning_rate": 2.2386934736277666e-07, "epoch": 0.7478632478632479, "percentage": 24.95, "elapsed_time": "5:16:38", "remaining_time": "15:52:42"}
{"current_steps": 460, "total_steps": 1824, "loss": 0.5363, "accuracy": 0.9700000286102295, "learning_rate": 2.2317163436357317e-07, "epoch": 0.7560815253122946, "percentage": 25.22, "elapsed_time": "5:20:07", "remaining_time": "15:49:14"}
{"current_steps": 465, "total_steps": 1824, "loss": 0.4837, "accuracy": 0.9700000286102295, "learning_rate": 2.2246584665270855e-07, "epoch": 0.7642998027613412, "percentage": 25.49, "elapsed_time": "5:23:38", "remaining_time": "15:45:51"}
{"current_steps": 470, "total_steps": 1824, "loss": 0.6008, "accuracy": 0.9700000286102295, "learning_rate": 2.2175204228190308e-07, "epoch": 0.7725180802103879, "percentage": 25.77, "elapsed_time": "5:27:06", "remaining_time": "15:42:21"}
{"current_steps": 475, "total_steps": 1824, "loss": 0.5997, "accuracy": 0.9599999785423279, "learning_rate": 2.2103027996225512e-07, "epoch": 0.7807363576594346, "percentage": 26.04, "elapsed_time": "5:30:34", "remaining_time": "15:38:49"}
{"current_steps": 480, "total_steps": 1824, "loss": 0.5072, "accuracy": 0.9800000190734863, "learning_rate": 2.2030061905941193e-07, "epoch": 0.7889546351084813, "percentage": 26.32, "elapsed_time": "5:34:03", "remaining_time": "15:35:21"}
{"current_steps": 485, "total_steps": 1824, "loss": 0.4832, "accuracy": 0.9800000190734863, "learning_rate": 2.1956311958868684e-07, "epoch": 0.797172912557528, "percentage": 26.59, "elapsed_time": "5:37:31", "remaining_time": "15:31:50"}
{"current_steps": 490, "total_steps": 1824, "loss": 0.5522, "accuracy": 0.9100000262260437, "learning_rate": 2.1881784221012307e-07, "epoch": 0.8053911900065747, "percentage": 26.86, "elapsed_time": "5:41:00", "remaining_time": "15:28:22"}
{"current_steps": 495, "total_steps": 1824, "loss": 0.511, "accuracy": 0.9599999785423279, "learning_rate": 2.1806484822350417e-07, "epoch": 0.8136094674556213, "percentage": 27.14, "elapsed_time": "5:44:29", "remaining_time": "15:24:53"}
{"current_steps": 500, "total_steps": 1824, "loss": 0.4967, "accuracy": 0.9800000190734863, "learning_rate": 2.1730419956331215e-07, "epoch": 0.821827744904668, "percentage": 27.41, "elapsed_time": "5:47:57", "remaining_time": "15:21:24"}
{"current_steps": 505, "total_steps": 1824, "loss": 0.5762, "accuracy": 0.9800000190734863, "learning_rate": 2.1653595879363335e-07, "epoch": 0.8300460223537146, "percentage": 27.69, "elapsed_time": "5:51:24", "remaining_time": "15:17:51"}
{"current_steps": 510, "total_steps": 1824, "loss": 0.5308, "accuracy": 0.949999988079071, "learning_rate": 2.1576018910301238e-07, "epoch": 0.8382642998027613, "percentage": 27.96, "elapsed_time": "5:54:53", "remaining_time": "15:14:21"}
{"current_steps": 515, "total_steps": 1824, "loss": 0.5127, "accuracy": 0.9700000286102295, "learning_rate": 2.1497695429925497e-07, "epoch": 0.846482577251808, "percentage": 28.23, "elapsed_time": "5:58:23", "remaining_time": "15:10:57"}
{"current_steps": 520, "total_steps": 1824, "loss": 0.5705, "accuracy": 0.9700000286102295, "learning_rate": 2.1418631880417954e-07, "epoch": 0.8547008547008547, "percentage": 28.51, "elapsed_time": "6:01:52", "remaining_time": "15:07:27"}
{"current_steps": 525, "total_steps": 1824, "loss": 0.5076, "accuracy": 0.9800000190734863, "learning_rate": 2.1338834764831843e-07, "epoch": 0.8629191321499013, "percentage": 28.78, "elapsed_time": "6:05:20", "remaining_time": "15:03:57"}
{"current_steps": 530, "total_steps": 1824, "loss": 0.4869, "accuracy": 0.9599999785423279, "learning_rate": 2.125831064655693e-07, "epoch": 0.871137409598948, "percentage": 29.06, "elapsed_time": "6:08:48", "remaining_time": "15:00:27"}
{"current_steps": 535, "total_steps": 1824, "loss": 0.5328, "accuracy": 0.9800000190734863, "learning_rate": 2.1177066148779655e-07, "epoch": 0.8793556870479947, "percentage": 29.33, "elapsed_time": "6:12:17", "remaining_time": "14:56:59"}
{"current_steps": 540, "total_steps": 1824, "loss": 0.491, "accuracy": 0.9599999785423279, "learning_rate": 2.1095107953938348e-07, "epoch": 0.8875739644970414, "percentage": 29.61, "elapsed_time": "6:15:45", "remaining_time": "14:53:28"}
{"current_steps": 545, "total_steps": 1824, "loss": 0.452, "accuracy": 0.9700000286102295, "learning_rate": 2.1012442803173634e-07, "epoch": 0.8957922419460881, "percentage": 29.88, "elapsed_time": "6:19:14", "remaining_time": "14:50:00"}
{"current_steps": 550, "total_steps": 1824, "loss": 0.5177, "accuracy": 0.9599999785423279, "learning_rate": 2.0929077495773927e-07, "epoch": 0.9040105193951348, "percentage": 30.15, "elapsed_time": "6:22:44", "remaining_time": "14:46:33"}
{"current_steps": 555, "total_steps": 1824, "loss": 0.4794, "accuracy": 0.9800000190734863, "learning_rate": 2.0845018888616212e-07, "epoch": 0.9122287968441815, "percentage": 30.43, "elapsed_time": "6:26:11", "remaining_time": "14:43:02"}
{"current_steps": 560, "total_steps": 1824, "loss": 0.5335, "accuracy": 0.949999988079071, "learning_rate": 2.0760273895602037e-07, "epoch": 0.9204470742932281, "percentage": 30.7, "elapsed_time": "6:29:40", "remaining_time": "14:39:33"}
{"current_steps": 565, "total_steps": 1824, "loss": 0.5958, "accuracy": 0.949999988079071, "learning_rate": 2.0674849487088864e-07, "epoch": 0.9286653517422748, "percentage": 30.98, "elapsed_time": "6:33:10", "remaining_time": "14:36:07"}
{"current_steps": 570, "total_steps": 1824, "loss": 0.5319, "accuracy": 0.949999988079071, "learning_rate": 2.0588752689316723e-07, "epoch": 0.9368836291913215, "percentage": 31.25, "elapsed_time": "6:36:39", "remaining_time": "14:32:39"}
{"current_steps": 575, "total_steps": 1824, "loss": 0.4981, "accuracy": 0.9599999785423279, "learning_rate": 2.0501990583830315e-07, "epoch": 0.9451019066403682, "percentage": 31.52, "elapsed_time": "6:40:07", "remaining_time": "14:29:08"}
{"current_steps": 580, "total_steps": 1824, "loss": 0.5512, "accuracy": 0.9399999976158142, "learning_rate": 2.0414570306896536e-07, "epoch": 0.9533201840894149, "percentage": 31.8, "elapsed_time": "6:43:35", "remaining_time": "14:25:38"}
{"current_steps": 585, "total_steps": 1824, "loss": 0.5755, "accuracy": 0.9599999785423279, "learning_rate": 2.0326499048917527e-07, "epoch": 0.9615384615384616, "percentage": 32.07, "elapsed_time": "6:47:04", "remaining_time": "14:22:10"}
{"current_steps": 590, "total_steps": 1824, "loss": 0.4418, "accuracy": 0.9599999785423279, "learning_rate": 2.023778405383925e-07, "epoch": 0.9697567389875082, "percentage": 32.35, "elapsed_time": "6:50:32", "remaining_time": "14:18:38"}
{"current_steps": 595, "total_steps": 1824, "loss": 0.5262, "accuracy": 0.9599999785423279, "learning_rate": 2.0148432618555651e-07, "epoch": 0.9779750164365549, "percentage": 32.62, "elapsed_time": "6:54:00", "remaining_time": "14:15:08"}
{"current_steps": 600, "total_steps": 1824, "loss": 0.5167, "accuracy": 0.9599999785423279, "learning_rate": 2.005845209230851e-07, "epoch": 0.9861932938856016, "percentage": 32.89, "elapsed_time": "6:57:29", "remaining_time": "14:11:41"}
{"current_steps": 605, "total_steps": 1824, "loss": 0.5367, "accuracy": 0.949999988079071, "learning_rate": 1.9967849876082937e-07, "epoch": 0.9944115713346483, "percentage": 33.17, "elapsed_time": "7:00:57", "remaining_time": "14:08:11"}
{"current_steps": 610, "total_steps": 1824, "loss": 0.4734, "accuracy": 0.9800000190734863, "learning_rate": 1.9876633421998652e-07, "epoch": 1.0026298487836949, "percentage": 33.44, "elapsed_time": "7:04:50", "remaining_time": "14:05:29"}
{"current_steps": 615, "total_steps": 1824, "loss": 0.4473, "accuracy": 0.9700000286102295, "learning_rate": 1.9784810232697024e-07, "epoch": 1.0108481262327416, "percentage": 33.72, "elapsed_time": "7:08:18", "remaining_time": "14:01:59"}
{"current_steps": 620, "total_steps": 1824, "loss": 0.423, "accuracy": 1.0, "learning_rate": 1.969238786072398e-07, "epoch": 1.0190664036817882, "percentage": 33.99, "elapsed_time": "7:11:48", "remaining_time": "13:58:32"}
{"current_steps": 625, "total_steps": 1824, "loss": 0.4746, "accuracy": 0.9700000286102295, "learning_rate": 1.9599373907908803e-07, "epoch": 1.027284681130835, "percentage": 34.27, "elapsed_time": "7:15:16", "remaining_time": "13:55:01"}
{"current_steps": 630, "total_steps": 1824, "loss": 0.494, "accuracy": 0.9599999785423279, "learning_rate": 1.9505776024738873e-07, "epoch": 1.0355029585798816, "percentage": 34.54, "elapsed_time": "7:18:44", "remaining_time": "13:51:31"}
{"current_steps": 635, "total_steps": 1824, "loss": 0.5568, "accuracy": 0.949999988079071, "learning_rate": 1.9411601909730397e-07, "epoch": 1.0437212360289283, "percentage": 34.81, "elapsed_time": "7:22:14", "remaining_time": "13:48:03"}
{"current_steps": 640, "total_steps": 1824, "loss": 0.5268, "accuracy": 0.949999988079071, "learning_rate": 1.9316859308795215e-07, "epoch": 1.051939513477975, "percentage": 35.09, "elapsed_time": "7:25:44", "remaining_time": "13:44:36"}
{"current_steps": 645, "total_steps": 1824, "loss": 0.4933, "accuracy": 0.949999988079071, "learning_rate": 1.9221556014603674e-07, "epoch": 1.0601577909270217, "percentage": 35.36, "elapsed_time": "7:29:13", "remaining_time": "13:41:07"}
{"current_steps": 650, "total_steps": 1824, "loss": 0.4992, "accuracy": 0.9399999976158142, "learning_rate": 1.9125699865943696e-07, "epoch": 1.0683760683760684, "percentage": 35.64, "elapsed_time": "7:32:41", "remaining_time": "13:37:38"}
{"current_steps": 655, "total_steps": 1824, "loss": 0.4653, "accuracy": 1.0, "learning_rate": 1.9029298747076e-07, "epoch": 1.076594345825115, "percentage": 35.91, "elapsed_time": "7:36:10", "remaining_time": "13:34:08"}
{"current_steps": 660, "total_steps": 1824, "loss": 0.4897, "accuracy": 0.9800000190734863, "learning_rate": 1.893236058708565e-07, "epoch": 1.0848126232741617, "percentage": 36.18, "elapsed_time": "7:39:38", "remaining_time": "13:30:38"}
{"current_steps": 665, "total_steps": 1824, "loss": 0.4925, "accuracy": 0.9599999785423279, "learning_rate": 1.8834893359229839e-07, "epoch": 1.0930309007232084, "percentage": 36.46, "elapsed_time": "7:43:07", "remaining_time": "13:27:09"}
{"current_steps": 670, "total_steps": 1824, "loss": 0.5118, "accuracy": 0.9800000190734863, "learning_rate": 1.8736905080282117e-07, "epoch": 1.101249178172255, "percentage": 36.73, "elapsed_time": "7:46:35", "remaining_time": "13:23:39"}
{"current_steps": 675, "total_steps": 1824, "loss": 0.4881, "accuracy": 0.9100000262260437, "learning_rate": 1.8638403809872988e-07, "epoch": 1.1094674556213018, "percentage": 37.01, "elapsed_time": "7:50:03", "remaining_time": "13:20:08"}
{"current_steps": 680, "total_steps": 1824, "loss": 0.4408, "accuracy": 0.9800000190734863, "learning_rate": 1.8539397649826993e-07, "epoch": 1.1176857330703485, "percentage": 37.28, "elapsed_time": "7:53:32", "remaining_time": "13:16:39"}
{"current_steps": 685, "total_steps": 1824, "loss": 0.464, "accuracy": 0.9800000190734863, "learning_rate": 1.8439894743496336e-07, "epoch": 1.1259040105193951, "percentage": 37.55, "elapsed_time": "7:57:03", "remaining_time": "13:13:13"}
{"current_steps": 690, "total_steps": 1824, "loss": 0.4292, "accuracy": 1.0, "learning_rate": 1.8339903275091085e-07, "epoch": 1.1341222879684418, "percentage": 37.83, "elapsed_time": "8:00:32", "remaining_time": "13:09:45"}
{"current_steps": 695, "total_steps": 1824, "loss": 0.4627, "accuracy": 0.9399999976158142, "learning_rate": 1.8239431469006e-07, "epoch": 1.1423405654174885, "percentage": 38.1, "elapsed_time": "8:03:59", "remaining_time": "13:06:14"}
{"current_steps": 700, "total_steps": 1824, "loss": 0.5063, "accuracy": 0.9700000286102295, "learning_rate": 1.8138487589144093e-07, "epoch": 1.1505588428665352, "percentage": 38.38, "elapsed_time": "8:07:29", "remaining_time": "13:02:46"}
{"current_steps": 705, "total_steps": 1824, "loss": 0.4823, "accuracy": 0.9599999785423279, "learning_rate": 1.8037079938236894e-07, "epoch": 1.1587771203155819, "percentage": 38.65, "elapsed_time": "8:10:56", "remaining_time": "12:59:14"}
{"current_steps": 710, "total_steps": 1824, "loss": 0.4268, "accuracy": 0.9800000190734863, "learning_rate": 1.793521685716154e-07, "epoch": 1.1669953977646286, "percentage": 38.93, "elapsed_time": "8:14:26", "remaining_time": "12:55:47"}
{"current_steps": 715, "total_steps": 1824, "loss": 0.4347, "accuracy": 0.9700000286102295, "learning_rate": 1.7832906724254747e-07, "epoch": 1.1752136752136753, "percentage": 39.2, "elapsed_time": "8:17:54", "remaining_time": "12:52:17"}
{"current_steps": 720, "total_steps": 1824, "loss": 0.5001, "accuracy": 0.9599999785423279, "learning_rate": 1.7730157954623685e-07, "epoch": 1.183431952662722, "percentage": 39.47, "elapsed_time": "8:21:22", "remaining_time": "12:48:46"}
{"current_steps": 725, "total_steps": 1824, "loss": 0.3929, "accuracy": 0.9900000095367432, "learning_rate": 1.7626978999453794e-07, "epoch": 1.1916502301117686, "percentage": 39.75, "elapsed_time": "8:24:51", "remaining_time": "12:45:17"}
{"current_steps": 730, "total_steps": 1824, "loss": 0.5242, "accuracy": 0.9900000095367432, "learning_rate": 1.7523378345313714e-07, "epoch": 1.1998685075608153, "percentage": 40.02, "elapsed_time": "8:28:19", "remaining_time": "12:41:47"}
{"current_steps": 735, "total_steps": 1824, "loss": 0.4562, "accuracy": 0.9900000095367432, "learning_rate": 1.741936451345722e-07, "epoch": 1.208086785009862, "percentage": 40.3, "elapsed_time": "8:31:48", "remaining_time": "12:38:18"}
{"current_steps": 740, "total_steps": 1824, "loss": 0.4598, "accuracy": 0.9700000286102295, "learning_rate": 1.731494605912235e-07, "epoch": 1.2163050624589087, "percentage": 40.57, "elapsed_time": "8:35:17", "remaining_time": "12:34:49"}
{"current_steps": 745, "total_steps": 1824, "loss": 0.4921, "accuracy": 0.9599999785423279, "learning_rate": 1.721013157082774e-07, "epoch": 1.2245233399079554, "percentage": 40.84, "elapsed_time": "8:38:47", "remaining_time": "12:31:23"}
{"current_steps": 750, "total_steps": 1824, "loss": 0.5132, "accuracy": 0.9800000190734863, "learning_rate": 1.7104929669666194e-07, "epoch": 1.232741617357002, "percentage": 41.12, "elapsed_time": "8:42:16", "remaining_time": "12:27:53"}
{"current_steps": 755, "total_steps": 1824, "loss": 0.4746, "accuracy": 0.9599999785423279, "learning_rate": 1.69993490085956e-07, "epoch": 1.2409598948060487, "percentage": 41.39, "elapsed_time": "8:45:45", "remaining_time": "12:24:24"}
{"current_steps": 760, "total_steps": 1824, "loss": 0.4574, "accuracy": 0.9900000095367432, "learning_rate": 1.6893398271727222e-07, "epoch": 1.2491781722550954, "percentage": 41.67, "elapsed_time": "8:49:13", "remaining_time": "12:20:55"}
{"current_steps": 765, "total_steps": 1824, "loss": 0.4631, "accuracy": 1.0, "learning_rate": 1.6787086173611407e-07, "epoch": 1.2573964497041419, "percentage": 41.94, "elapsed_time": "8:52:42", "remaining_time": "12:17:25"}
{"current_steps": 770, "total_steps": 1824, "loss": 0.4905, "accuracy": 0.9800000190734863, "learning_rate": 1.6680421458520813e-07, "epoch": 1.2656147271531886, "percentage": 42.21, "elapsed_time": "8:56:10", "remaining_time": "12:13:55"}
{"current_steps": 775, "total_steps": 1824, "loss": 0.4091, "accuracy": 1.0, "learning_rate": 1.6573412899731187e-07, "epoch": 1.2738330046022353, "percentage": 42.49, "elapsed_time": "8:59:39", "remaining_time": "12:10:27"}
{"current_steps": 780, "total_steps": 1824, "loss": 0.4266, "accuracy": 0.9800000190734863, "learning_rate": 1.646606929879975e-07, "epoch": 1.282051282051282, "percentage": 42.76, "elapsed_time": "9:03:07", "remaining_time": "12:06:57"}
{"current_steps": 785, "total_steps": 1824, "loss": 0.5129, "accuracy": 0.9599999785423279, "learning_rate": 1.6358399484841268e-07, "epoch": 1.2902695595003286, "percentage": 43.04, "elapsed_time": "9:06:36", "remaining_time": "12:03:28"}
{"current_steps": 790, "total_steps": 1824, "loss": 0.4581, "accuracy": 0.9800000190734863, "learning_rate": 1.625041231380184e-07, "epoch": 1.2984878369493753, "percentage": 43.31, "elapsed_time": "9:10:05", "remaining_time": "11:59:59"}
{"current_steps": 795, "total_steps": 1824, "loss": 0.4713, "accuracy": 0.9599999785423279, "learning_rate": 1.6142116667730482e-07, "epoch": 1.306706114398422, "percentage": 43.59, "elapsed_time": "9:13:32", "remaining_time": "11:56:28"}
{"current_steps": 800, "total_steps": 1824, "loss": 0.4673, "accuracy": 0.9399999976158142, "learning_rate": 1.6033521454048597e-07, "epoch": 1.3149243918474687, "percentage": 43.86, "elapsed_time": "9:17:01", "remaining_time": "11:52:59"}
{"current_steps": 805, "total_steps": 1824, "loss": 0.4065, "accuracy": 0.9800000190734863, "learning_rate": 1.5924635604817306e-07, "epoch": 1.3231426692965154, "percentage": 44.13, "elapsed_time": "9:20:30", "remaining_time": "11:49:31"}
{"current_steps": 810, "total_steps": 1824, "loss": 0.429, "accuracy": 0.949999988079071, "learning_rate": 1.5815468076002771e-07, "epoch": 1.331360946745562, "percentage": 44.41, "elapsed_time": "9:23:59", "remaining_time": "11:46:01"}
{"current_steps": 815, "total_steps": 1824, "loss": 0.4521, "accuracy": 0.9700000286102295, "learning_rate": 1.5706027846739588e-07, "epoch": 1.3395792241946087, "percentage": 44.68, "elapsed_time": "9:27:28", "remaining_time": "11:42:33"}
{"current_steps": 820, "total_steps": 1824, "loss": 0.4833, "accuracy": 0.9200000166893005, "learning_rate": 1.5596323918592227e-07, "epoch": 1.3477975016436554, "percentage": 44.96, "elapsed_time": "9:30:58", "remaining_time": "11:39:06"}
{"current_steps": 825, "total_steps": 1824, "loss": 0.4084, "accuracy": 0.949999988079071, "learning_rate": 1.5486365314814637e-07, "epoch": 1.356015779092702, "percentage": 45.23, "elapsed_time": "9:34:26", "remaining_time": "11:35:36"}
{"current_steps": 830, "total_steps": 1824, "loss": 0.46, "accuracy": 0.949999988079071, "learning_rate": 1.5376161079608088e-07, "epoch": 1.3642340565417488, "percentage": 45.5, "elapsed_time": "9:37:56", "remaining_time": "11:32:08"}
{"current_steps": 835, "total_steps": 1824, "loss": 0.4435, "accuracy": 0.9599999785423279, "learning_rate": 1.5265720277377273e-07, "epoch": 1.3724523339907955, "percentage": 45.78, "elapsed_time": "9:41:26", "remaining_time": "11:28:40"}
{"current_steps": 840, "total_steps": 1824, "loss": 0.4849, "accuracy": 0.949999988079071, "learning_rate": 1.5155051991984745e-07, "epoch": 1.3806706114398422, "percentage": 46.05, "elapsed_time": "9:44:55", "remaining_time": "11:25:11"}
{"current_steps": 845, "total_steps": 1824, "loss": 0.4367, "accuracy": 0.9800000190734863, "learning_rate": 1.504416532600378e-07, "epoch": 1.3888888888888888, "percentage": 46.33, "elapsed_time": "9:48:23", "remaining_time": "11:21:41"}
{"current_steps": 850, "total_steps": 1824, "loss": 0.4617, "accuracy": 0.949999988079071, "learning_rate": 1.4933069399969653e-07, "epoch": 1.3971071663379355, "percentage": 46.6, "elapsed_time": "9:51:51", "remaining_time": "11:18:11"}
{"current_steps": 855, "total_steps": 1824, "loss": 0.4132, "accuracy": 0.9599999785423279, "learning_rate": 1.4821773351629487e-07, "epoch": 1.4053254437869822, "percentage": 46.88, "elapsed_time": "9:55:18", "remaining_time": "11:14:41"}
{"current_steps": 860, "total_steps": 1824, "loss": 0.4363, "accuracy": 0.9800000190734863, "learning_rate": 1.4710286335190664e-07, "epoch": 1.413543721236029, "percentage": 47.15, "elapsed_time": "9:58:46", "remaining_time": "11:11:10"}
{"current_steps": 865, "total_steps": 1824, "loss": 0.4445, "accuracy": 0.9800000190734863, "learning_rate": 1.4598617520567863e-07, "epoch": 1.4217619986850756, "percentage": 47.42, "elapsed_time": "10:02:15", "remaining_time": "11:07:41"}
{"current_steps": 870, "total_steps": 1824, "loss": 0.4916, "accuracy": 0.9399999976158142, "learning_rate": 1.448677609262885e-07, "epoch": 1.4299802761341223, "percentage": 47.7, "elapsed_time": "10:05:44", "remaining_time": "11:04:13"}
{"current_steps": 875, "total_steps": 1824, "loss": 0.353, "accuracy": 0.9800000190734863, "learning_rate": 1.4374771250438997e-07, "epoch": 1.438198553583169, "percentage": 47.97, "elapsed_time": "10:09:12", "remaining_time": "11:00:44"}
{"current_steps": 880, "total_steps": 1824, "loss": 0.4398, "accuracy": 0.9599999785423279, "learning_rate": 1.4262612206504653e-07, "epoch": 1.4464168310322156, "percentage": 48.25, "elapsed_time": "10:12:41", "remaining_time": "10:57:15"}
{"current_steps": 885, "total_steps": 1824, "loss": 0.4864, "accuracy": 0.9700000286102295, "learning_rate": 1.4150308186015428e-07, "epoch": 1.4546351084812623, "percentage": 48.52, "elapsed_time": "10:16:10", "remaining_time": "10:53:46"}
{"current_steps": 890, "total_steps": 1824, "loss": 0.4823, "accuracy": 0.9700000286102295, "learning_rate": 1.4037868426085368e-07, "epoch": 1.462853385930309, "percentage": 48.79, "elapsed_time": "10:19:38", "remaining_time": "10:50:16"}
{"current_steps": 895, "total_steps": 1824, "loss": 0.4288, "accuracy": 0.9599999785423279, "learning_rate": 1.3925302174993233e-07, "epoch": 1.4710716633793557, "percentage": 49.07, "elapsed_time": "10:23:07", "remaining_time": "10:46:48"}
{"current_steps": 900, "total_steps": 1824, "loss": 0.4755, "accuracy": 0.9800000190734863, "learning_rate": 1.3812618691421803e-07, "epoch": 1.4792899408284024, "percentage": 49.34, "elapsed_time": "10:26:36", "remaining_time": "10:43:18"}
{"current_steps": 905, "total_steps": 1824, "loss": 0.4732, "accuracy": 0.9300000071525574, "learning_rate": 1.3699827243696336e-07, "epoch": 1.487508218277449, "percentage": 49.62, "elapsed_time": "10:30:04", "remaining_time": "10:39:49"}
{"current_steps": 910, "total_steps": 1824, "loss": 0.4663, "accuracy": 0.9900000095367432, "learning_rate": 1.3586937109022251e-07, "epoch": 1.4957264957264957, "percentage": 49.89, "elapsed_time": "10:33:34", "remaining_time": "10:36:21"}
{"current_steps": 915, "total_steps": 1824, "loss": 0.4515, "accuracy": 1.0, "learning_rate": 1.347395757272207e-07, "epoch": 1.5039447731755424, "percentage": 50.16, "elapsed_time": "10:37:04", "remaining_time": "10:32:54"}
{"current_steps": 920, "total_steps": 1824, "loss": 0.4632, "accuracy": 0.9399999976158142, "learning_rate": 1.3360897927471668e-07, "epoch": 1.5121630506245891, "percentage": 50.44, "elapsed_time": "10:40:33", "remaining_time": "10:29:25"}
{"current_steps": 925, "total_steps": 1824, "loss": 0.4686, "accuracy": 0.9700000286102295, "learning_rate": 1.3247767472535972e-07, "epoch": 1.5203813280736358, "percentage": 50.71, "elapsed_time": "10:44:01", "remaining_time": "10:25:55"}
{"current_steps": 930, "total_steps": 1824, "loss": 0.3908, "accuracy": 0.9800000190734863, "learning_rate": 1.3134575513004073e-07, "epoch": 1.5285996055226825, "percentage": 50.99, "elapsed_time": "10:47:31", "remaining_time": "10:22:27"}
{"current_steps": 935, "total_steps": 1824, "loss": 0.4262, "accuracy": 1.0, "learning_rate": 1.3021331359023874e-07, "epoch": 1.5368178829717292, "percentage": 51.26, "elapsed_time": "10:50:59", "remaining_time": "10:18:57"}
{"current_steps": 940, "total_steps": 1824, "loss": 0.4616, "accuracy": 0.9900000095367432, "learning_rate": 1.2908044325036312e-07, "epoch": 1.5450361604207759, "percentage": 51.54, "elapsed_time": "10:54:27", "remaining_time": "10:15:28"}
{"current_steps": 945, "total_steps": 1824, "loss": 0.4502, "accuracy": 0.949999988079071, "learning_rate": 1.2794723729009255e-07, "epoch": 1.5532544378698225, "percentage": 51.81, "elapsed_time": "10:57:57", "remaining_time": "10:11:59"}
{"current_steps": 950, "total_steps": 1824, "loss": 0.4737, "accuracy": 0.9900000095367432, "learning_rate": 1.2681378891671082e-07, "epoch": 1.5614727153188692, "percentage": 52.08, "elapsed_time": "11:01:25", "remaining_time": "10:08:31"}
{"current_steps": 955, "total_steps": 1824, "loss": 0.4349, "accuracy": 0.9900000095367432, "learning_rate": 1.2568019135744044e-07, "epoch": 1.569690992767916, "percentage": 52.36, "elapsed_time": "11:04:53", "remaining_time": "10:05:00"}
{"current_steps": 960, "total_steps": 1824, "loss": 0.4231, "accuracy": 0.9900000095367432, "learning_rate": 1.2454653785177445e-07, "epoch": 1.5779092702169626, "percentage": 52.63, "elapsed_time": "11:08:22", "remaining_time": "10:01:32"}
{"current_steps": 965, "total_steps": 1824, "loss": 0.4817, "accuracy": 0.9399999976158142, "learning_rate": 1.2341292164380783e-07, "epoch": 1.5861275476660093, "percentage": 52.91, "elapsed_time": "11:11:50", "remaining_time": "9:58:02"}
{"current_steps": 970, "total_steps": 1824, "loss": 0.4114, "accuracy": 1.0, "learning_rate": 1.222794359745675e-07, "epoch": 1.594345825115056, "percentage": 53.18, "elapsed_time": "11:15:18", "remaining_time": "9:54:33"}
{"current_steps": 975, "total_steps": 1824, "loss": 0.4326, "accuracy": 0.9800000190734863, "learning_rate": 1.2114617407434354e-07, "epoch": 1.6025641025641026, "percentage": 53.45, "elapsed_time": "11:18:47", "remaining_time": "9:51:04"}
{"current_steps": 980, "total_steps": 1824, "loss": 0.3942, "accuracy": 0.9700000286102295, "learning_rate": 1.2001322915502091e-07, "epoch": 1.6107823800131493, "percentage": 53.73, "elapsed_time": "11:22:15", "remaining_time": "9:47:34"}
{"current_steps": 985, "total_steps": 1824, "loss": 0.4222, "accuracy": 0.9800000190734863, "learning_rate": 1.1888069440241243e-07, "epoch": 1.619000657462196, "percentage": 54.0, "elapsed_time": "11:25:43", "remaining_time": "9:44:05"}
{"current_steps": 990, "total_steps": 1824, "loss": 0.4749, "accuracy": 0.9800000190734863, "learning_rate": 1.1774866296859448e-07, "epoch": 1.6272189349112427, "percentage": 54.28, "elapsed_time": "11:29:13", "remaining_time": "9:40:36"}
{"current_steps": 995, "total_steps": 1824, "loss": 0.4268, "accuracy": 0.9900000095367432, "learning_rate": 1.1661722796424478e-07, "epoch": 1.6354372123602894, "percentage": 54.55, "elapsed_time": "11:32:42", "remaining_time": "9:37:08"}
{"current_steps": 1000, "total_steps": 1824, "loss": 0.4368, "accuracy": 0.9900000095367432, "learning_rate": 1.1548648245098432e-07, "epoch": 1.643655489809336, "percentage": 54.82, "elapsed_time": "11:36:13", "remaining_time": "9:33:41"}
{"current_steps": 1005, "total_steps": 1824, "loss": 0.4208, "accuracy": 1.0, "learning_rate": 1.1435651943372278e-07, "epoch": 1.6518737672583828, "percentage": 55.1, "elapsed_time": "11:39:41", "remaining_time": "9:30:11"}
{"current_steps": 1010, "total_steps": 1824, "loss": 0.4889, "accuracy": 0.9399999976158142, "learning_rate": 1.1322743185300865e-07, "epoch": 1.6600920447074294, "percentage": 55.37, "elapsed_time": "11:43:09", "remaining_time": "9:26:41"}
{"current_steps": 1015, "total_steps": 1824, "loss": 0.4487, "accuracy": 0.9800000190734863, "learning_rate": 1.1209931257738503e-07, "epoch": 1.6683103221564761, "percentage": 55.65, "elapsed_time": "11:46:38", "remaining_time": "9:23:13"}
{"current_steps": 1020, "total_steps": 1824, "loss": 0.4648, "accuracy": 0.949999988079071, "learning_rate": 1.1097225439575096e-07, "epoch": 1.6765285996055228, "percentage": 55.92, "elapsed_time": "11:50:07", "remaining_time": "9:19:44"}
{"current_steps": 1025, "total_steps": 1824, "loss": 0.5101, "accuracy": 0.9599999785423279, "learning_rate": 1.0984635000972946e-07, "epoch": 1.6847468770545695, "percentage": 56.2, "elapsed_time": "11:53:35", "remaining_time": "9:16:15"}
{"current_steps": 1030, "total_steps": 1824, "loss": 0.4259, "accuracy": 0.949999988079071, "learning_rate": 1.0872169202604284e-07, "epoch": 1.6929651545036162, "percentage": 56.47, "elapsed_time": "11:57:04", "remaining_time": "9:12:46"}
{"current_steps": 1035, "total_steps": 1824, "loss": 0.4365, "accuracy": 0.9700000286102295, "learning_rate": 1.0759837294889546e-07, "epoch": 1.7011834319526629, "percentage": 56.74, "elapsed_time": "12:00:31", "remaining_time": "9:09:16"}
{"current_steps": 1040, "total_steps": 1824, "loss": 0.4077, "accuracy": 0.9800000190734863, "learning_rate": 1.0647648517236547e-07, "epoch": 1.7094017094017095, "percentage": 57.02, "elapsed_time": "12:04:01", "remaining_time": "9:05:48"}
{"current_steps": 1045, "total_steps": 1824, "loss": 0.4578, "accuracy": 0.949999988079071, "learning_rate": 1.0535612097280505e-07, "epoch": 1.7176199868507562, "percentage": 57.29, "elapsed_time": "12:07:31", "remaining_time": "9:02:19"}
{"current_steps": 1050, "total_steps": 1824, "loss": 0.4706, "accuracy": 0.9599999785423279, "learning_rate": 1.042373725012508e-07, "epoch": 1.725838264299803, "percentage": 57.57, "elapsed_time": "12:10:59", "remaining_time": "8:58:50"}
{"current_steps": 1055, "total_steps": 1824, "loss": 0.3922, "accuracy": 0.9800000190734863, "learning_rate": 1.0312033177584409e-07, "epoch": 1.7340565417488496, "percentage": 57.84, "elapsed_time": "12:14:29", "remaining_time": "8:55:22"}
{"current_steps": 1060, "total_steps": 1824, "loss": 0.444, "accuracy": 0.9700000286102295, "learning_rate": 1.0200509067426243e-07, "epoch": 1.7422748191978963, "percentage": 58.11, "elapsed_time": "12:17:58", "remaining_time": "8:51:53"}
{"current_steps": 1065, "total_steps": 1824, "loss": 0.4607, "accuracy": 0.9399999976158142, "learning_rate": 1.0089174092616271e-07, "epoch": 1.7504930966469427, "percentage": 58.39, "elapsed_time": "12:21:26", "remaining_time": "8:48:24"}
{"current_steps": 1070, "total_steps": 1824, "loss": 0.3879, "accuracy": 0.949999988079071, "learning_rate": 9.97803741056361e-08, "epoch": 1.7587113740959894, "percentage": 58.66, "elapsed_time": "12:24:57", "remaining_time": "8:44:56"}
{"current_steps": 1075, "total_steps": 1824, "loss": 0.3974, "accuracy": 0.9700000286102295, "learning_rate": 9.867108162367594e-08, "epoch": 1.7669296515450361, "percentage": 58.94, "elapsed_time": "12:28:26", "remaining_time": "8:41:28"}
{"current_steps": 1080, "total_steps": 1824, "loss": 0.4368, "accuracy": 0.9700000286102295, "learning_rate": 9.756395472065947e-08, "epoch": 1.7751479289940828, "percentage": 59.21, "elapsed_time": "12:31:56", "remaining_time": "8:38:00"}
{"current_steps": 1085, "total_steps": 1824, "loss": 0.392, "accuracy": 1.0, "learning_rate": 9.645908445884271e-08, "epoch": 1.7833662064431295, "percentage": 59.48, "elapsed_time": "12:35:24", "remaining_time": "8:34:30"}
{"current_steps": 1090, "total_steps": 1824, "loss": 0.4113, "accuracy": 0.9900000095367432, "learning_rate": 9.535656171487096e-08, "epoch": 1.7915844838921762, "percentage": 59.76, "elapsed_time": "12:38:53", "remaining_time": "8:31:02"}
{"current_steps": 1095, "total_steps": 1824, "loss": 0.4062, "accuracy": 0.949999988079071, "learning_rate": 9.425647717230382e-08, "epoch": 1.7998027613412229, "percentage": 60.03, "elapsed_time": "12:42:22", "remaining_time": "8:27:33"}
{"current_steps": 1100, "total_steps": 1824, "loss": 0.3948, "accuracy": 0.9800000190734863, "learning_rate": 9.315892131415642e-08, "epoch": 1.8080210387902695, "percentage": 60.31, "elapsed_time": "12:45:50", "remaining_time": "8:24:04"}
{"current_steps": 1105, "total_steps": 1824, "loss": 0.3759, "accuracy": 1.0, "learning_rate": 9.206398441545729e-08, "epoch": 1.8162393162393162, "percentage": 60.58, "elapsed_time": "12:49:20", "remaining_time": "8:20:35"}
{"current_steps": 1110, "total_steps": 1824, "loss": 0.41, "accuracy": 0.9599999785423279, "learning_rate": 9.097175653582299e-08, "epoch": 1.824457593688363, "percentage": 60.86, "elapsed_time": "12:52:49", "remaining_time": "8:17:07"}
{"current_steps": 1115, "total_steps": 1824, "loss": 0.4401, "accuracy": 0.9599999785423279, "learning_rate": 8.988232751205051e-08, "epoch": 1.8326758711374096, "percentage": 61.13, "elapsed_time": "12:56:16", "remaining_time": "8:13:37"}
{"current_steps": 1120, "total_steps": 1824, "loss": 0.4135, "accuracy": 0.9800000190734863, "learning_rate": 8.879578695072846e-08, "epoch": 1.8408941485864563, "percentage": 61.4, "elapsed_time": "12:59:46", "remaining_time": "8:10:08"}
{"current_steps": 1125, "total_steps": 1824, "loss": 0.3998, "accuracy": 0.9800000190734863, "learning_rate": 8.771222422086639e-08, "epoch": 1.849112426035503, "percentage": 61.68, "elapsed_time": "13:03:14", "remaining_time": "8:06:39"}
{"current_steps": 1130, "total_steps": 1824, "loss": 0.4455, "accuracy": 0.9700000286102295, "learning_rate": 8.663172844654452e-08, "epoch": 1.8573307034845496, "percentage": 61.95, "elapsed_time": "13:06:42", "remaining_time": "8:03:10"}
{"current_steps": 1135, "total_steps": 1824, "loss": 0.3864, "accuracy": 0.949999988079071, "learning_rate": 8.555438849958296e-08, "epoch": 1.8655489809335963, "percentage": 62.23, "elapsed_time": "13:10:10", "remaining_time": "7:59:40"}
{"current_steps": 1140, "total_steps": 1824, "loss": 0.4933, "accuracy": 0.949999988079071, "learning_rate": 8.448029299223194e-08, "epoch": 1.873767258382643, "percentage": 62.5, "elapsed_time": "13:13:38", "remaining_time": "7:56:10"}
{"current_steps": 1145, "total_steps": 1824, "loss": 0.4615, "accuracy": 0.9599999785423279, "learning_rate": 8.340953026988351e-08, "epoch": 1.8819855358316897, "percentage": 62.77, "elapsed_time": "13:17:05", "remaining_time": "7:52:41"}
{"current_steps": 1150, "total_steps": 1824, "loss": 0.4341, "accuracy": 0.9700000286102295, "learning_rate": 8.234218840380475e-08, "epoch": 1.8902038132807364, "percentage": 63.05, "elapsed_time": "13:20:32", "remaining_time": "7:49:11"}
{"current_steps": 1155, "total_steps": 1824, "loss": 0.4095, "accuracy": 0.9800000190734863, "learning_rate": 8.127835518389417e-08, "epoch": 1.898422090729783, "percentage": 63.32, "elapsed_time": "13:24:00", "remaining_time": "7:45:42"}
{"current_steps": 1160, "total_steps": 1824, "loss": 0.4551, "accuracy": 0.9599999785423279, "learning_rate": 8.021811811146075e-08, "epoch": 1.9066403681788298, "percentage": 63.6, "elapsed_time": "13:27:28", "remaining_time": "7:42:12"}
{"current_steps": 1165, "total_steps": 1824, "loss": 0.4289, "accuracy": 0.9800000190734863, "learning_rate": 7.916156439202672e-08, "epoch": 1.9148586456278764, "percentage": 63.87, "elapsed_time": "13:30:58", "remaining_time": "7:38:44"}
{"current_steps": 1170, "total_steps": 1824, "loss": 0.3663, "accuracy": 0.9700000286102295, "learning_rate": 7.810878092815512e-08, "epoch": 1.9230769230769231, "percentage": 64.14, "elapsed_time": "13:34:25", "remaining_time": "7:35:14"}
{"current_steps": 1175, "total_steps": 1824, "loss": 0.391, "accuracy": 0.9800000190734863, "learning_rate": 7.705985431230183e-08, "epoch": 1.9312952005259696, "percentage": 64.42, "elapsed_time": "13:37:56", "remaining_time": "7:31:47"}
{"current_steps": 1180, "total_steps": 1824, "loss": 0.3851, "accuracy": 0.9300000071525574, "learning_rate": 7.601487081969307e-08, "epoch": 1.9395134779750163, "percentage": 64.69, "elapsed_time": "13:41:26", "remaining_time": "7:28:18"}
{"current_steps": 1185, "total_steps": 1824, "loss": 0.4041, "accuracy": 0.9700000286102295, "learning_rate": 7.497391640122967e-08, "epoch": 1.947731755424063, "percentage": 64.97, "elapsed_time": "13:44:55", "remaining_time": "7:24:50"}
{"current_steps": 1190, "total_steps": 1824, "loss": 0.4276, "accuracy": 0.9700000286102295, "learning_rate": 7.393707667641691e-08, "epoch": 1.9559500328731096, "percentage": 65.24, "elapsed_time": "13:48:24", "remaining_time": "7:21:21"}
{"current_steps": 1195, "total_steps": 1824, "loss": 0.4942, "accuracy": 0.9700000286102295, "learning_rate": 7.290443692632281e-08, "epoch": 1.9641683103221563, "percentage": 65.52, "elapsed_time": "13:51:52", "remaining_time": "7:17:52"}
{"current_steps": 1200, "total_steps": 1824, "loss": 0.3964, "accuracy": 0.9900000095367432, "learning_rate": 7.187608208656328e-08, "epoch": 1.972386587771203, "percentage": 65.79, "elapsed_time": "13:55:20", "remaining_time": "7:14:22"}
{"current_steps": 1205, "total_steps": 1824, "loss": 0.3766, "accuracy": 0.9800000190734863, "learning_rate": 7.085209674031618e-08, "epoch": 1.9806048652202497, "percentage": 66.06, "elapsed_time": "13:58:48", "remaining_time": "7:10:53"}
{"current_steps": 1210, "total_steps": 1824, "loss": 0.3878, "accuracy": 0.949999988079071, "learning_rate": 6.983256511136442e-08, "epoch": 1.9888231426692964, "percentage": 66.34, "elapsed_time": "14:02:17", "remaining_time": "7:07:24"}
{"current_steps": 1215, "total_steps": 1824, "loss": 0.4009, "accuracy": 0.9900000095367432, "learning_rate": 6.881757105716831e-08, "epoch": 1.997041420118343, "percentage": 66.61, "elapsed_time": "14:05:46", "remaining_time": "7:03:55"}
{"current_steps": 1220, "total_steps": 1824, "loss": 0.4449, "accuracy": 0.9800000190734863, "learning_rate": 6.780719806196828e-08, "epoch": 2.0052596975673898, "percentage": 66.89, "elapsed_time": "14:09:42", "remaining_time": "7:00:40"}
{"current_steps": 1225, "total_steps": 1824, "loss": 0.3868, "accuracy": 0.9599999785423279, "learning_rate": 6.680152922991822e-08, "epoch": 2.0134779750164364, "percentage": 67.16, "elapsed_time": "14:13:10", "remaining_time": "6:57:11"}
{"current_steps": 1230, "total_steps": 1824, "loss": 0.4093, "accuracy": 0.9399999976158142, "learning_rate": 6.580064727824994e-08, "epoch": 2.021696252465483, "percentage": 67.43, "elapsed_time": "14:16:38", "remaining_time": "6:53:41"}
{"current_steps": 1235, "total_steps": 1824, "loss": 0.4202, "accuracy": 0.9599999785423279, "learning_rate": 6.480463453046985e-08, "epoch": 2.02991452991453, "percentage": 67.71, "elapsed_time": "14:20:06", "remaining_time": "6:50:12"}
{"current_steps": 1240, "total_steps": 1824, "loss": 0.3722, "accuracy": 0.9900000095367432, "learning_rate": 6.381357290958767e-08, "epoch": 2.0381328073635765, "percentage": 67.98, "elapsed_time": "14:23:36", "remaining_time": "6:46:44"}
{"current_steps": 1245, "total_steps": 1824, "loss": 0.4065, "accuracy": 0.9599999785423279, "learning_rate": 6.282754393137796e-08, "epoch": 2.046351084812623, "percentage": 68.26, "elapsed_time": "14:27:04", "remaining_time": "6:43:14"}
{"current_steps": 1250, "total_steps": 1824, "loss": 0.4175, "accuracy": 0.949999988079071, "learning_rate": 6.184662869767577e-08, "epoch": 2.05456936226167, "percentage": 68.53, "elapsed_time": "14:30:33", "remaining_time": "6:39:45"}
{"current_steps": 1255, "total_steps": 1824, "loss": 0.4021, "accuracy": 0.9599999785423279, "learning_rate": 6.08709078897056e-08, "epoch": 2.0627876397107165, "percentage": 68.8, "elapsed_time": "14:34:02", "remaining_time": "6:36:16"}
{"current_steps": 1260, "total_steps": 1824, "loss": 0.4283, "accuracy": 0.9100000262260437, "learning_rate": 5.990046176144551e-08, "epoch": 2.0710059171597632, "percentage": 69.08, "elapsed_time": "14:37:29", "remaining_time": "6:32:47"}
{"current_steps": 1265, "total_steps": 1824, "loss": 0.4253, "accuracy": 0.9900000095367432, "learning_rate": 5.893537013302602e-08, "epoch": 2.07922419460881, "percentage": 69.35, "elapsed_time": "14:40:57", "remaining_time": "6:29:17"}
{"current_steps": 1270, "total_steps": 1824, "loss": 0.4009, "accuracy": 0.9700000286102295, "learning_rate": 5.7975712384164795e-08, "epoch": 2.0874424720578566, "percentage": 69.63, "elapsed_time": "14:44:25", "remaining_time": "6:25:48"}
{"current_steps": 1275, "total_steps": 1824, "loss": 0.4211, "accuracy": 0.9599999785423279, "learning_rate": 5.702156744763784e-08, "epoch": 2.0956607495069033, "percentage": 69.9, "elapsed_time": "14:47:52", "remaining_time": "6:22:18"}
{"current_steps": 1280, "total_steps": 1824, "loss": 0.4356, "accuracy": 0.9599999785423279, "learning_rate": 5.607301380278683e-08, "epoch": 2.10387902695595, "percentage": 70.18, "elapsed_time": "14:51:18", "remaining_time": "6:18:48"}
{"current_steps": 1285, "total_steps": 1824, "loss": 0.3884, "accuracy": 0.9599999785423279, "learning_rate": 5.513012946906445e-08, "epoch": 2.1120973044049967, "percentage": 70.45, "elapsed_time": "14:54:45", "remaining_time": "6:15:18"}
{"current_steps": 1290, "total_steps": 1824, "loss": 0.3565, "accuracy": 0.9900000095367432, "learning_rate": 5.419299199961708e-08, "epoch": 2.1203155818540433, "percentage": 70.72, "elapsed_time": "14:58:12", "remaining_time": "6:11:49"}
{"current_steps": 1295, "total_steps": 1824, "loss": 0.391, "accuracy": 0.9599999785423279, "learning_rate": 5.3261678474905785e-08, "epoch": 2.12853385930309, "percentage": 71.0, "elapsed_time": "15:01:39", "remaining_time": "6:08:19"}
{"current_steps": 1300, "total_steps": 1824, "loss": 0.3604, "accuracy": 0.9900000095367432, "learning_rate": 5.2336265496366774e-08, "epoch": 2.1367521367521367, "percentage": 71.27, "elapsed_time": "15:05:06", "remaining_time": "6:04:49"}
{"current_steps": 1305, "total_steps": 1824, "loss": 0.4611, "accuracy": 0.9700000286102295, "learning_rate": 5.141682918011055e-08, "epoch": 2.1449704142011834, "percentage": 71.55, "elapsed_time": "15:08:33", "remaining_time": "6:01:19"}
{"current_steps": 1310, "total_steps": 1824, "loss": 0.3828, "accuracy": 1.0, "learning_rate": 5.0503445150661306e-08, "epoch": 2.15318869165023, "percentage": 71.82, "elapsed_time": "15:11:59", "remaining_time": "5:57:50"}
{"current_steps": 1315, "total_steps": 1824, "loss": 0.4158, "accuracy": 0.9700000286102295, "learning_rate": 4.959618853473696e-08, "epoch": 2.1614069690992768, "percentage": 72.09, "elapsed_time": "15:15:29", "remaining_time": "5:54:21"}
{"current_steps": 1320, "total_steps": 1824, "loss": 0.429, "accuracy": 0.9599999785423279, "learning_rate": 4.8695133955069564e-08, "epoch": 2.1696252465483234, "percentage": 72.37, "elapsed_time": "15:18:57", "remaining_time": "5:50:52"}
{"current_steps": 1325, "total_steps": 1824, "loss": 0.4175, "accuracy": 0.9800000190734863, "learning_rate": 4.780035552426787e-08, "epoch": 2.17784352399737, "percentage": 72.64, "elapsed_time": "15:22:23", "remaining_time": "5:47:22"}
{"current_steps": 1330, "total_steps": 1824, "loss": 0.382, "accuracy": 0.9900000095367432, "learning_rate": 4.691192683872129e-08, "epoch": 2.186061801446417, "percentage": 72.92, "elapsed_time": "15:25:50", "remaining_time": "5:43:53"}
{"current_steps": 1335, "total_steps": 1824, "loss": 0.3948, "accuracy": 0.9599999785423279, "learning_rate": 4.602992097254646e-08, "epoch": 2.1942800788954635, "percentage": 73.19, "elapsed_time": "15:29:17", "remaining_time": "5:40:23"}
{"current_steps": 1340, "total_steps": 1824, "loss": 0.4279, "accuracy": 0.9700000286102295, "learning_rate": 4.515441047157707e-08, "epoch": 2.20249835634451, "percentage": 73.46, "elapsed_time": "15:32:43", "remaining_time": "5:36:53"}
{"current_steps": 1345, "total_steps": 1824, "loss": 0.3393, "accuracy": 0.9900000095367432, "learning_rate": 4.428546734739666e-08, "epoch": 2.210716633793557, "percentage": 73.74, "elapsed_time": "15:36:09", "remaining_time": "5:33:23"}
{"current_steps": 1350, "total_steps": 1824, "loss": 0.4169, "accuracy": 0.9599999785423279, "learning_rate": 4.342316307141568e-08, "epoch": 2.2189349112426036, "percentage": 74.01, "elapsed_time": "15:39:35", "remaining_time": "5:29:54"}
{"current_steps": 1355, "total_steps": 1824, "loss": 0.3688, "accuracy": 0.9800000190734863, "learning_rate": 4.256756856899299e-08, "epoch": 2.2271531886916502, "percentage": 74.29, "elapsed_time": "15:43:02", "remaining_time": "5:26:24"}
{"current_steps": 1360, "total_steps": 1824, "loss": 0.4039, "accuracy": 0.9599999785423279, "learning_rate": 4.171875421360202e-08, "epoch": 2.235371466140697, "percentage": 74.56, "elapsed_time": "15:46:28", "remaining_time": "5:22:54"}
{"current_steps": 1365, "total_steps": 1824, "loss": 0.3941, "accuracy": 0.9599999785423279, "learning_rate": 4.0876789821042606e-08, "epoch": 2.2435897435897436, "percentage": 74.84, "elapsed_time": "15:49:54", "remaining_time": "5:19:25"}
{"current_steps": 1370, "total_steps": 1824, "loss": 0.4133, "accuracy": 0.9800000190734863, "learning_rate": 4.0041744643698585e-08, "epoch": 2.2518080210387903, "percentage": 75.11, "elapsed_time": "15:53:20", "remaining_time": "5:15:55"}
{"current_steps": 1375, "total_steps": 1824, "loss": 0.3827, "accuracy": 0.9900000095367432, "learning_rate": 3.9213687364841514e-08, "epoch": 2.260026298487837, "percentage": 75.38, "elapsed_time": "15:56:47", "remaining_time": "5:12:26"}
{"current_steps": 1380, "total_steps": 1824, "loss": 0.3713, "accuracy": 0.9700000286102295, "learning_rate": 3.8392686092981716e-08, "epoch": 2.2682445759368837, "percentage": 75.66, "elapsed_time": "16:00:15", "remaining_time": "5:08:57"}
{"current_steps": 1385, "total_steps": 1824, "loss": 0.3984, "accuracy": 0.9800000190734863, "learning_rate": 3.757880835626601e-08, "epoch": 2.2764628533859304, "percentage": 75.93, "elapsed_time": "16:03:41", "remaining_time": "5:05:27"}
{"current_steps": 1390, "total_steps": 1824, "loss": 0.4114, "accuracy": 1.0, "learning_rate": 3.677212109692364e-08, "epoch": 2.284681130834977, "percentage": 76.21, "elapsed_time": "16:07:08", "remaining_time": "5:01:58"}
{"current_steps": 1395, "total_steps": 1824, "loss": 0.3695, "accuracy": 0.9700000286102295, "learning_rate": 3.597269066576017e-08, "epoch": 2.2928994082840237, "percentage": 76.48, "elapsed_time": "16:10:35", "remaining_time": "4:58:29"}
{"current_steps": 1400, "total_steps": 1824, "loss": 0.405, "accuracy": 1.0, "learning_rate": 3.518058281669996e-08, "epoch": 2.3011176857330704, "percentage": 76.75, "elapsed_time": "16:14:01", "remaining_time": "4:54:59"}
{"current_steps": 1405, "total_steps": 1824, "loss": 0.382, "accuracy": 0.9800000190734863, "learning_rate": 3.439586270137797e-08, "epoch": 2.309335963182117, "percentage": 77.03, "elapsed_time": "16:17:27", "remaining_time": "4:51:30"}
{"current_steps": 1410, "total_steps": 1824, "loss": 0.3468, "accuracy": 0.9800000190734863, "learning_rate": 3.3618594863780993e-08, "epoch": 2.3175542406311638, "percentage": 77.3, "elapsed_time": "16:20:53", "remaining_time": "4:48:00"}
{"current_steps": 1415, "total_steps": 1824, "loss": 0.36, "accuracy": 1.0, "learning_rate": 3.2848843234938694e-08, "epoch": 2.3257725180802105, "percentage": 77.58, "elapsed_time": "16:24:18", "remaining_time": "4:44:30"}
{"current_steps": 1420, "total_steps": 1824, "loss": 0.3933, "accuracy": 0.9800000190734863, "learning_rate": 3.208667112766529e-08, "epoch": 2.333990795529257, "percentage": 77.85, "elapsed_time": "16:27:44", "remaining_time": "4:41:01"}
{"current_steps": 1425, "total_steps": 1824, "loss": 0.3954, "accuracy": 0.9900000095367432, "learning_rate": 3.1332141231352194e-08, "epoch": 2.342209072978304, "percentage": 78.12, "elapsed_time": "16:31:11", "remaining_time": "4:37:31"}
{"current_steps": 1430, "total_steps": 1824, "loss": 0.3363, "accuracy": 0.9800000190734863, "learning_rate": 3.058531560681141e-08, "epoch": 2.3504273504273505, "percentage": 78.4, "elapsed_time": "16:34:38", "remaining_time": "4:34:02"}
{"current_steps": 1435, "total_steps": 1824, "loss": 0.4029, "accuracy": 0.9800000190734863, "learning_rate": 2.984625568117129e-08, "epoch": 2.358645627876397, "percentage": 78.67, "elapsed_time": "16:38:04", "remaining_time": "4:30:33"}
{"current_steps": 1440, "total_steps": 1824, "loss": 0.3968, "accuracy": 0.9800000190734863, "learning_rate": 2.9115022242823862e-08, "epoch": 2.366863905325444, "percentage": 78.95, "elapsed_time": "16:41:30", "remaining_time": "4:27:04"}
{"current_steps": 1445, "total_steps": 1824, "loss": 0.4211, "accuracy": 0.9900000095367432, "learning_rate": 2.839167543642511e-08, "epoch": 2.3750821827744906, "percentage": 79.22, "elapsed_time": "16:44:57", "remaining_time": "4:23:35"}
{"current_steps": 1450, "total_steps": 1824, "loss": 0.3838, "accuracy": 0.9800000190734863, "learning_rate": 2.7676274757947816e-08, "epoch": 2.3833004602235373, "percentage": 79.5, "elapsed_time": "16:48:24", "remaining_time": "4:20:06"}
{"current_steps": 1455, "total_steps": 1824, "loss": 0.4051, "accuracy": 0.949999988079071, "learning_rate": 2.696887904978819e-08, "epoch": 2.391518737672584, "percentage": 79.77, "elapsed_time": "16:51:51", "remaining_time": "4:16:36"}
{"current_steps": 1460, "total_steps": 1824, "loss": 0.4246, "accuracy": 0.9700000286102295, "learning_rate": 2.6269546495925886e-08, "epoch": 2.3997370151216306, "percentage": 80.04, "elapsed_time": "16:55:18", "remaining_time": "4:13:07"}
{"current_steps": 1465, "total_steps": 1824, "loss": 0.3833, "accuracy": 0.9599999785423279, "learning_rate": 2.5578334617138236e-08, "epoch": 2.4079552925706773, "percentage": 80.32, "elapsed_time": "16:58:45", "remaining_time": "4:09:38"}
{"current_steps": 1470, "total_steps": 1824, "loss": 0.379, "accuracy": 0.9900000095367432, "learning_rate": 2.489530026626932e-08, "epoch": 2.416173570019724, "percentage": 80.59, "elapsed_time": "17:02:13", "remaining_time": "4:06:10"}
{"current_steps": 1475, "total_steps": 1824, "loss": 0.3486, "accuracy": 0.9900000095367432, "learning_rate": 2.422049962355366e-08, "epoch": 2.4243918474687707, "percentage": 80.87, "elapsed_time": "17:05:39", "remaining_time": "4:02:40"}
{"current_steps": 1480, "total_steps": 1824, "loss": 0.3744, "accuracy": 0.9700000286102295, "learning_rate": 2.3553988191995208e-08, "epoch": 2.4326101249178174, "percentage": 81.14, "elapsed_time": "17:09:05", "remaining_time": "3:59:11"}
{"current_steps": 1485, "total_steps": 1824, "loss": 0.3695, "accuracy": 0.9800000190734863, "learning_rate": 2.2895820792802474e-08, "epoch": 2.440828402366864, "percentage": 81.41, "elapsed_time": "17:12:32", "remaining_time": "3:55:42"}
{"current_steps": 1490, "total_steps": 1824, "loss": 0.4179, "accuracy": 0.9599999785423279, "learning_rate": 2.2246051560879095e-08, "epoch": 2.4490466798159107, "percentage": 81.69, "elapsed_time": "17:15:59", "remaining_time": "3:52:13"}
{"current_steps": 1495, "total_steps": 1824, "loss": 0.4504, "accuracy": 0.9800000190734863, "learning_rate": 2.160473394037149e-08, "epoch": 2.4572649572649574, "percentage": 81.96, "elapsed_time": "17:19:26", "remaining_time": "3:48:44"}
{"current_steps": 1500, "total_steps": 1824, "loss": 0.3262, "accuracy": 0.9800000190734863, "learning_rate": 2.097192068027276e-08, "epoch": 2.465483234714004, "percentage": 82.24, "elapsed_time": "17:22:53", "remaining_time": "3:45:15"}
{"current_steps": 1505, "total_steps": 1824, "loss": 0.3978, "accuracy": 0.9900000095367432, "learning_rate": 2.0347663830084182e-08, "epoch": 2.473701512163051, "percentage": 82.51, "elapsed_time": "17:26:19", "remaining_time": "3:41:46"}
{"current_steps": 1510, "total_steps": 1824, "loss": 0.4156, "accuracy": 0.9700000286102295, "learning_rate": 1.9732014735534168e-08, "epoch": 2.4819197896120975, "percentage": 82.79, "elapsed_time": "17:29:46", "remaining_time": "3:38:17"}
{"current_steps": 1515, "total_steps": 1824, "loss": 0.351, "accuracy": 0.9599999785423279, "learning_rate": 1.9125024034354758e-08, "epoch": 2.490138067061144, "percentage": 83.06, "elapsed_time": "17:33:13", "remaining_time": "3:34:48"}
{"current_steps": 1520, "total_steps": 1824, "loss": 0.3733, "accuracy": 0.9800000190734863, "learning_rate": 1.85267416521169e-08, "epoch": 2.498356344510191, "percentage": 83.33, "elapsed_time": "17:36:41", "remaining_time": "3:31:20"}
{"current_steps": 1525, "total_steps": 1824, "loss": 0.3857, "accuracy": 0.9700000286102295, "learning_rate": 1.793721679812389e-08, "epoch": 2.5065746219592375, "percentage": 83.61, "elapsed_time": "17:40:07", "remaining_time": "3:27:51"}
{"current_steps": 1530, "total_steps": 1824, "loss": 0.3883, "accuracy": 0.9300000071525574, "learning_rate": 1.735649796136382e-08, "epoch": 2.5147928994082838, "percentage": 83.88, "elapsed_time": "17:43:36", "remaining_time": "3:24:22"}
{"current_steps": 1535, "total_steps": 1824, "loss": 0.3626, "accuracy": 0.9800000190734863, "learning_rate": 1.678463290652142e-08, "epoch": 2.523011176857331, "percentage": 84.16, "elapsed_time": "17:47:05", "remaining_time": "3:20:54"}
{"current_steps": 1540, "total_steps": 1824, "loss": 0.3481, "accuracy": 0.9900000095367432, "learning_rate": 1.6221668670049315e-08, "epoch": 2.531229454306377, "percentage": 84.43, "elapsed_time": "17:50:34", "remaining_time": "3:17:25"}
{"current_steps": 1545, "total_steps": 1824, "loss": 0.3531, "accuracy": 0.9800000190734863, "learning_rate": 1.5667651556299178e-08, "epoch": 2.5394477317554243, "percentage": 84.7, "elapsed_time": "17:54:02", "remaining_time": "3:13:57"}
{"current_steps": 1550, "total_steps": 1824, "loss": 0.3849, "accuracy": 0.9800000190734863, "learning_rate": 1.5122627133713262e-08, "epoch": 2.5476660092044705, "percentage": 84.98, "elapsed_time": "17:57:30", "remaining_time": "3:10:28"}
{"current_steps": 1555, "total_steps": 1824, "loss": 0.3699, "accuracy": 0.9399999976158142, "learning_rate": 1.4586640231076226e-08, "epoch": 2.5558842866535176, "percentage": 85.25, "elapsed_time": "18:00:58", "remaining_time": "3:06:59"}
{"current_steps": 1560, "total_steps": 1824, "loss": 0.3552, "accuracy": 0.9700000286102295, "learning_rate": 1.405973493382806e-08, "epoch": 2.564102564102564, "percentage": 85.53, "elapsed_time": "18:04:26", "remaining_time": "3:03:31"}
{"current_steps": 1565, "total_steps": 1824, "loss": 0.3254, "accuracy": 0.9800000190734863, "learning_rate": 1.3541954580437941e-08, "epoch": 2.572320841551611, "percentage": 85.8, "elapsed_time": "18:07:54", "remaining_time": "3:00:02"}
{"current_steps": 1570, "total_steps": 1824, "loss": 0.4055, "accuracy": 0.9800000190734863, "learning_rate": 1.3033341758839592e-08, "epoch": 2.5805391190006572, "percentage": 86.07, "elapsed_time": "18:11:23", "remaining_time": "2:56:34"}
{"current_steps": 1575, "total_steps": 1824, "loss": 0.3683, "accuracy": 0.9900000095367432, "learning_rate": 1.2533938302928329e-08, "epoch": 2.5887573964497044, "percentage": 86.35, "elapsed_time": "18:14:51", "remaining_time": "2:53:05"}
{"current_steps": 1580, "total_steps": 1824, "loss": 0.378, "accuracy": 0.9599999785423279, "learning_rate": 1.2043785289120409e-08, "epoch": 2.5969756738987506, "percentage": 86.62, "elapsed_time": "18:18:19", "remaining_time": "2:49:36"}
{"current_steps": 1585, "total_steps": 1824, "loss": 0.3656, "accuracy": 0.9800000190734863, "learning_rate": 1.1562923032974125e-08, "epoch": 2.6051939513477977, "percentage": 86.9, "elapsed_time": "18:21:48", "remaining_time": "2:46:08"}
{"current_steps": 1590, "total_steps": 1824, "loss": 0.3909, "accuracy": 0.9800000190734863, "learning_rate": 1.1091391085874161e-08, "epoch": 2.613412228796844, "percentage": 87.17, "elapsed_time": "18:25:15", "remaining_time": "2:42:39"}
{"current_steps": 1595, "total_steps": 1824, "loss": 0.3818, "accuracy": 0.9900000095367432, "learning_rate": 1.06292282317781e-08, "epoch": 2.621630506245891, "percentage": 87.45, "elapsed_time": "18:28:43", "remaining_time": "2:39:11"}
{"current_steps": 1600, "total_steps": 1824, "loss": 0.4384, "accuracy": 0.9700000286102295, "learning_rate": 1.017647248402674e-08, "epoch": 2.6298487836949374, "percentage": 87.72, "elapsed_time": "18:32:13", "remaining_time": "2:35:42"}
{"current_steps": 1605, "total_steps": 1824, "loss": 0.4032, "accuracy": 0.9800000190734863, "learning_rate": 9.733161082217223e-09, "epoch": 2.6380670611439845, "percentage": 87.99, "elapsed_time": "18:35:42", "remaining_time": "2:32:14"}
{"current_steps": 1610, "total_steps": 1824, "loss": 0.4197, "accuracy": 0.949999988079071, "learning_rate": 9.299330489140125e-09, "epoch": 2.6462853385930307, "percentage": 88.27, "elapsed_time": "18:39:10", "remaining_time": "2:28:45"}
{"current_steps": 1615, "total_steps": 1824, "loss": 0.4112, "accuracy": 0.949999988079071, "learning_rate": 8.87501638778039e-09, "epoch": 2.654503616042078, "percentage": 88.54, "elapsed_time": "18:42:38", "remaining_time": "2:25:17"}
{"current_steps": 1620, "total_steps": 1824, "loss": 0.3553, "accuracy": 0.9700000286102295, "learning_rate": 8.460253678382296e-09, "epoch": 2.662721893491124, "percentage": 88.82, "elapsed_time": "18:46:06", "remaining_time": "2:21:48"}
{"current_steps": 1625, "total_steps": 1824, "loss": 0.3922, "accuracy": 0.9900000095367432, "learning_rate": 8.055076475578918e-09, "epoch": 2.6709401709401708, "percentage": 89.09, "elapsed_time": "18:49:35", "remaining_time": "2:18:19"}
{"current_steps": 1630, "total_steps": 1824, "loss": 0.3539, "accuracy": 0.9599999785423279, "learning_rate": 7.659518105586238e-09, "epoch": 2.6791584483892175, "percentage": 89.36, "elapsed_time": "18:53:02", "remaining_time": "2:14:51"}
{"current_steps": 1635, "total_steps": 1824, "loss": 0.3316, "accuracy": 0.9800000190734863, "learning_rate": 7.273611103461836e-09, "epoch": 2.687376725838264, "percentage": 89.64, "elapsed_time": "18:56:31", "remaining_time": "2:11:22"}
{"current_steps": 1640, "total_steps": 1824, "loss": 0.4056, "accuracy": 0.9800000190734863, "learning_rate": 6.897387210429067e-09, "epoch": 2.695595003287311, "percentage": 89.91, "elapsed_time": "18:59:59", "remaining_time": "2:07:54"}
{"current_steps": 1645, "total_steps": 1824, "loss": 0.3542, "accuracy": 0.9800000190734863, "learning_rate": 6.530877371266175e-09, "epoch": 2.7038132807363575, "percentage": 90.19, "elapsed_time": "19:03:26", "remaining_time": "2:04:25"}
{"current_steps": 1650, "total_steps": 1824, "loss": 0.4291, "accuracy": 0.9700000286102295, "learning_rate": 6.1741117317611196e-09, "epoch": 2.712031558185404, "percentage": 90.46, "elapsed_time": "19:06:55", "remaining_time": "2:00:56"}
{"current_steps": 1655, "total_steps": 1824, "loss": 0.4103, "accuracy": 0.9300000071525574, "learning_rate": 5.827119636232017e-09, "epoch": 2.720249835634451, "percentage": 90.73, "elapsed_time": "19:10:24", "remaining_time": "1:57:28"}
{"current_steps": 1660, "total_steps": 1824, "loss": 0.4266, "accuracy": 0.9700000286102295, "learning_rate": 5.489929625113549e-09, "epoch": 2.7284681130834976, "percentage": 91.01, "elapsed_time": "19:13:54", "remaining_time": "1:54:00"}
{"current_steps": 1665, "total_steps": 1824, "loss": 0.3332, "accuracy": 0.9900000095367432, "learning_rate": 5.1625694326095506e-09, "epoch": 2.7366863905325443, "percentage": 91.28, "elapsed_time": "19:17:21", "remaining_time": "1:50:31"}
{"current_steps": 1670, "total_steps": 1824, "loss": 0.357, "accuracy": 0.9599999785423279, "learning_rate": 4.845065984411742e-09, "epoch": 2.744904667981591, "percentage": 91.56, "elapsed_time": "19:20:53", "remaining_time": "1:47:03"}
{"current_steps": 1675, "total_steps": 1824, "loss": 0.3677, "accuracy": 0.9700000286102295, "learning_rate": 4.5374453954851035e-09, "epoch": 2.7531229454306376, "percentage": 91.83, "elapsed_time": "19:24:22", "remaining_time": "1:43:34"}
{"current_steps": 1680, "total_steps": 1824, "loss": 0.3946, "accuracy": 0.9900000095367432, "learning_rate": 4.239732967919976e-09, "epoch": 2.7613412228796843, "percentage": 92.11, "elapsed_time": "19:27:52", "remaining_time": "1:40:06"}
{"current_steps": 1685, "total_steps": 1824, "loss": 0.3834, "accuracy": 0.9800000190734863, "learning_rate": 3.951953188850762e-09, "epoch": 2.769559500328731, "percentage": 92.38, "elapsed_time": "19:31:32", "remaining_time": "1:36:38"}
{"current_steps": 1690, "total_steps": 1824, "loss": 0.3877, "accuracy": 0.9599999785423279, "learning_rate": 3.674129728442013e-09, "epoch": 2.7777777777777777, "percentage": 92.65, "elapsed_time": "19:35:17", "remaining_time": "1:33:11"}
{"current_steps": 1695, "total_steps": 1824, "loss": 0.3607, "accuracy": 0.9800000190734863, "learning_rate": 3.4062854379414694e-09, "epoch": 2.7859960552268244, "percentage": 92.93, "elapsed_time": "19:39:03", "remaining_time": "1:29:43"}
{"current_steps": 1700, "total_steps": 1824, "loss": 0.4297, "accuracy": 0.9700000286102295, "learning_rate": 3.1484423478004563e-09, "epoch": 2.794214332675871, "percentage": 93.2, "elapsed_time": "19:42:47", "remaining_time": "1:26:16"}
{"current_steps": 1705, "total_steps": 1824, "loss": 0.399, "accuracy": 0.9700000286102295, "learning_rate": 2.9006216658619687e-09, "epoch": 2.8024326101249177, "percentage": 93.48, "elapsed_time": "19:46:34", "remaining_time": "1:22:48"}
{"current_steps": 1710, "total_steps": 1824, "loss": 0.3473, "accuracy": 0.9700000286102295, "learning_rate": 2.6628437756162635e-09, "epoch": 2.8106508875739644, "percentage": 93.75, "elapsed_time": "19:50:20", "remaining_time": "1:19:21"}
{"current_steps": 1715, "total_steps": 1824, "loss": 0.4067, "accuracy": 0.9800000190734863, "learning_rate": 2.435128234524228e-09, "epoch": 2.818869165023011, "percentage": 94.02, "elapsed_time": "19:54:04", "remaining_time": "1:15:53"}
{"current_steps": 1720, "total_steps": 1824, "loss": 0.4069, "accuracy": 0.9200000166893005, "learning_rate": 2.2174937724088877e-09, "epoch": 2.827087442472058, "percentage": 94.3, "elapsed_time": "19:57:49", "remaining_time": "1:12:25"}
{"current_steps": 1725, "total_steps": 1824, "loss": 0.3451, "accuracy": 0.9700000286102295, "learning_rate": 2.009958289914765e-09, "epoch": 2.8353057199211045, "percentage": 94.57, "elapsed_time": "20:01:33", "remaining_time": "1:08:57"}
{"current_steps": 1730, "total_steps": 1824, "loss": 0.3337, "accuracy": 0.9900000095367432, "learning_rate": 1.8125388570355422e-09, "epoch": 2.843523997370151, "percentage": 94.85, "elapsed_time": "20:05:15", "remaining_time": "1:05:29"}
{"current_steps": 1735, "total_steps": 1824, "loss": 0.4137, "accuracy": 0.9700000286102295, "learning_rate": 1.6252517117101017e-09, "epoch": 2.851742274819198, "percentage": 95.12, "elapsed_time": "20:08:59", "remaining_time": "1:02:01"}
{"current_steps": 1740, "total_steps": 1824, "loss": 0.4201, "accuracy": 1.0, "learning_rate": 1.4481122584868582e-09, "epoch": 2.8599605522682445, "percentage": 95.39, "elapsed_time": "20:12:43", "remaining_time": "0:58:32"}
{"current_steps": 1745, "total_steps": 1824, "loss": 0.4267, "accuracy": 0.9700000286102295, "learning_rate": 1.2811350672568138e-09, "epoch": 2.868178829717291, "percentage": 95.67, "elapsed_time": "20:16:28", "remaining_time": "0:55:04"}
{"current_steps": 1750, "total_steps": 1824, "loss": 0.4018, "accuracy": 0.9599999785423279, "learning_rate": 1.1243338720550445e-09, "epoch": 2.876397107166338, "percentage": 95.94, "elapsed_time": "20:20:15", "remaining_time": "0:51:35"}
{"current_steps": 1755, "total_steps": 1824, "loss": 0.3855, "accuracy": 0.9599999785423279, "learning_rate": 9.777215699311725e-10, "epoch": 2.8846153846153846, "percentage": 96.22, "elapsed_time": "20:24:02", "remaining_time": "0:48:07"}
{"current_steps": 1760, "total_steps": 1824, "loss": 0.4478, "accuracy": 1.0, "learning_rate": 8.413102198885358e-10, "epoch": 2.8928336620644313, "percentage": 96.49, "elapsed_time": "20:27:51", "remaining_time": "0:44:38"}
{"current_steps": 1765, "total_steps": 1824, "loss": 0.3988, "accuracy": 0.9900000095367432, "learning_rate": 7.151110418923134e-10, "epoch": 2.901051939513478, "percentage": 96.77, "elapsed_time": "20:31:24", "remaining_time": "0:41:09"}
{"current_steps": 1770, "total_steps": 1824, "loss": 0.352, "accuracy": 0.949999988079071, "learning_rate": 5.991344159466672e-10, "epoch": 2.9092702169625246, "percentage": 97.04, "elapsed_time": "20:35:00", "remaining_time": "0:37:40"}
{"current_steps": 1775, "total_steps": 1824, "loss": 0.3936, "accuracy": 0.9800000190734863, "learning_rate": 4.933898812409937e-10, "epoch": 2.9174884944115713, "percentage": 97.31, "elapsed_time": "20:38:35", "remaining_time": "0:34:11"}
{"current_steps": 1780, "total_steps": 1824, "loss": 0.4187, "accuracy": 0.949999988079071, "learning_rate": 3.978861353653301e-10, "epoch": 2.925706771860618, "percentage": 97.59, "elapsed_time": "20:42:05", "remaining_time": "0:30:42"}
{"current_steps": 1785, "total_steps": 1824, "loss": 0.3632, "accuracy": 0.9399999976158142, "learning_rate": 3.1263103359494005e-10, "epoch": 2.9339250493096647, "percentage": 97.86, "elapsed_time": "20:45:39", "remaining_time": "0:27:12"}
{"current_steps": 1790, "total_steps": 1824, "loss": 0.3455, "accuracy": 1.0, "learning_rate": 2.3763158824419147e-10, "epoch": 2.9421433267587114, "percentage": 98.14, "elapsed_time": "20:49:10", "remaining_time": "0:23:43"}
{"current_steps": 1795, "total_steps": 1824, "loss": 0.367, "accuracy": 0.9900000095367432, "learning_rate": 1.728939680898517e-10, "epoch": 2.950361604207758, "percentage": 98.41, "elapsed_time": "20:52:38", "remaining_time": "0:20:14"}
{"current_steps": 1800, "total_steps": 1824, "loss": 0.3921, "accuracy": 0.9599999785423279, "learning_rate": 1.184234978636456e-10, "epoch": 2.9585798816568047, "percentage": 98.68, "elapsed_time": "20:56:06", "remaining_time": "0:16:44"}
{"current_steps": 1805, "total_steps": 1824, "loss": 0.3843, "accuracy": 0.9700000286102295, "learning_rate": 7.422465781431464e-11, "epoch": 2.9667981591058514, "percentage": 98.96, "elapsed_time": "20:59:34", "remaining_time": "0:13:15"}
{"current_steps": 1810, "total_steps": 1824, "loss": 0.3819, "accuracy": 0.9700000286102295, "learning_rate": 4.030108333910598e-11, "epoch": 2.975016436554898, "percentage": 99.23, "elapsed_time": "21:03:01", "remaining_time": "0:09:46"}
{"current_steps": 1815, "total_steps": 1824, "loss": 0.372, "accuracy": 0.949999988079071, "learning_rate": 1.6655564684747713e-11, "epoch": 2.983234714003945, "percentage": 99.51, "elapsed_time": "21:06:29", "remaining_time": "0:06:16"}
{"current_steps": 1820, "total_steps": 1824, "loss": 0.3871, "accuracy": 0.9800000190734863, "learning_rate": 3.290046717979722e-12, "epoch": 2.9914529914529915, "percentage": 99.78, "elapsed_time": "21:10:00", "remaining_time": "0:02:47"}
{"current_steps": 1824, "total_steps": 1824, "epoch": 2.998027613412229, "percentage": 100.0, "elapsed_time": "21:13:52", "remaining_time": "0:00:00"}