LouisDT commited on
Commit
df8f295
1 Parent(s): 73666bc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-finetuned
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-finetuned
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5590
20
+ - Accuracy: 0.8641
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 135
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.7163 | 0.21 | 28 | 0.6078 | 0.8098 |
53
+ | 0.7383 | 1.21 | 56 | 0.6975 | 0.4728 |
54
+ | 0.6853 | 2.21 | 84 | 0.6637 | 0.6957 |
55
+ | 0.7065 | 3.21 | 112 | 0.5590 | 0.8641 |
56
+ | 0.6673 | 4.17 | 135 | 0.5766 | 0.8587 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.26.0
62
+ - Pytorch 1.13.1+cu116
63
+ - Datasets 2.9.0
64
+ - Tokenizers 0.13.2