LovenOO commited on
Commit
2c78551
·
1 Parent(s): 112a533

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2808
24
- - Precision: 0.9608
25
- - Recall: 0.9612
26
- - F1: 0.9607
27
- - Accuracy: 0.9606
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 450 | 0.2169 | 0.9437 | 0.9445 | 0.9432 | 0.9433 |
59
- | 0.4523 | 2.0 | 900 | 0.1979 | 0.9486 | 0.9486 | 0.9479 | 0.9478 |
60
- | 0.109 | 3.0 | 1350 | 0.2404 | 0.9545 | 0.9539 | 0.9533 | 0.9533 |
61
- | 0.0659 | 4.0 | 1800 | 0.2330 | 0.9559 | 0.9555 | 0.9550 | 0.955 |
62
- | 0.0301 | 5.0 | 2250 | 0.2434 | 0.9580 | 0.9583 | 0.9580 | 0.9578 |
63
- | 0.0201 | 6.0 | 2700 | 0.2462 | 0.9572 | 0.9569 | 0.9570 | 0.9567 |
64
- | 0.0089 | 7.0 | 3150 | 0.2618 | 0.9581 | 0.9585 | 0.9581 | 0.9578 |
65
- | 0.0074 | 8.0 | 3600 | 0.2717 | 0.9616 | 0.9618 | 0.9612 | 0.9611 |
66
- | 0.0025 | 9.0 | 4050 | 0.2805 | 0.9597 | 0.9601 | 0.9596 | 0.9594 |
67
- | 0.0014 | 10.0 | 4500 | 0.2808 | 0.9608 | 0.9612 | 0.9607 | 0.9606 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2754
24
+ - Precision: 0.9537
25
+ - Recall: 0.9539
26
+ - F1: 0.9534
27
+ - Accuracy: 0.9533
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 450 | 0.2320 | 0.9410 | 0.9412 | 0.9399 | 0.94 |
59
+ | 0.5426 | 2.0 | 900 | 0.2227 | 0.9465 | 0.9472 | 0.9460 | 0.9461 |
60
+ | 0.1125 | 3.0 | 1350 | 0.2242 | 0.9456 | 0.9446 | 0.9444 | 0.9439 |
61
+ | 0.0642 | 4.0 | 1800 | 0.2368 | 0.9557 | 0.9556 | 0.9550 | 0.955 |
62
+ | 0.0368 | 5.0 | 2250 | 0.2539 | 0.9515 | 0.9512 | 0.9513 | 0.9506 |
63
+ | 0.024 | 6.0 | 2700 | 0.2570 | 0.9543 | 0.9546 | 0.9539 | 0.9539 |
64
+ | 0.0106 | 7.0 | 3150 | 0.2576 | 0.9554 | 0.9547 | 0.9549 | 0.9544 |
65
+ | 0.0121 | 8.0 | 3600 | 0.2783 | 0.9538 | 0.9540 | 0.9534 | 0.9533 |
66
+ | 0.0047 | 9.0 | 4050 | 0.2817 | 0.9538 | 0.9540 | 0.9534 | 0.9533 |
67
+ | 0.003 | 10.0 | 4500 | 0.2754 | 0.9537 | 0.9539 | 0.9534 | 0.9533 |
68
 
69
 
70
  ### Framework versions