Edit model card

distilBERT_with_preprocessing_grid_search

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8637
  • Precision: 0.8392
  • Recall: 0.8339
  • F1: 0.8360
  • Accuracy: 0.8630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9492 1.0 510 0.5973 0.7572 0.8287 0.7836 0.8434
0.4661 2.0 1020 0.5080 0.8146 0.8535 0.8311 0.8567
0.2954 3.0 1530 0.6910 0.8283 0.8231 0.8245 0.8591
0.2263 4.0 2040 0.7367 0.8448 0.8293 0.8363 0.8635
0.1749 5.0 2550 0.7399 0.8402 0.8373 0.8383 0.8650
0.1273 6.0 3060 0.7759 0.8352 0.8414 0.8377 0.8689
0.1051 7.0 3570 0.8864 0.8375 0.8271 0.8308 0.8616
0.0877 8.0 4080 0.8407 0.8327 0.8360 0.8335 0.8625
0.0781 9.0 4590 0.8586 0.8345 0.8362 0.8345 0.8645
0.0627 10.0 5100 0.8637 0.8392 0.8339 0.8360 0.8630

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LovenOO/distilBERT_with_preprocessing_grid_search

Finetuned
(6799)
this model