Luca77 commited on
Commit
c2f8052
1 Parent(s): 27c7cce

first deep reinforcement learning experiment with the Lunar Lander! To the stars and beyond!

Browse files
Files changed (8) hide show
  1. LL3.zip +2 -2
  2. LL3/data +24 -24
  3. LL3/policy.optimizer.pth +1 -1
  4. LL3/policy.pth +1 -1
  5. README.md +1 -1
  6. config.json +1 -1
  7. replay.mp4 +0 -0
  8. results.json +1 -1
LL3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:609f83122f185b3a9a21896336ac4964b2409e468956804f4ad28b2a221d6449
3
- size 147302
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188b569f3232688466e976b72a9ef1bacc4431e7c5d453fd459469edd439d386
3
+ size 147297
LL3/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd331876c10>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd331876ca0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd331876d30>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd331876dc0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd331876e50>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd331876ee0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd331876f70>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd33187a040>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd33187a0d0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd33187a160>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd33187a1f0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd33187a280>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7fd33186df60>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 1015808,
47
- "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1673793209022593506,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADA+nj4GTl8/7SJPPpM0Hr8iBt8+rtcjvQAAAAAAAAAAmgY0vWwfqD/KC+e+FYMWv5XCVrwOGzC+AAAAAAAAAAAA6h48I1IOP8+7u713Gyq/T57qPWJimb0AAAAAAAAAAE00F71Iy7W6ijgbuF6FGbPEEBC6LUoxNwAAgD8AAIA/wEHAvfaEZrqqXjyzS8UlsBbcmDrcT8YzAACAPwAAgD+mlpY9eDbwPNxBsr50D3q+JQdevrOJCb0AAAAAAAAAAAAs2ztci2W6vOwXPustW7ZUyY84E0RStQAAgD8AAIA/GtRUvVKPJj7x65g9vnylvrXv47ytc9O8AAAAAAAAAABT0wI+nwWEuyZzVT2nhse7/kH1vFSVqrwAAIA/AACAP7MMmD7nAUY/i5DZPZuNKr/oo8A+fulMvgAAAAAAAAAADbSTvRSPuD6E2jO9O00Sv0Kflb0Nw+c8AAAAAAAAAACaqtA8pFgGOl4YTTNTOOWuSjQwO5MTvLMAAIA/AACAP1oOOb5KZaU+TlmOPrK4pL5Qi7C9/Sx1PgAAAAAAAAAAmgkzPeliTrw6FyO+XFQVPF5Jtj32/f28AACAPwAAgD8T9gC+8MVrP6w8kb45DCm/sxF8vmZnkb0AAAAAAAAAACDcAL64xIs+oU6cPa9Htr5oBo29coWBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,24 +67,24 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInBa86GuqckCUhpRSlIwBbJRL24wBdJRHQLFU3QhfShJ1fZQoaAZoCWgPQwiuSExQA1JzQJSGlFKUaBVL5GgWR0CxVOi08eS0dX2UKGgGaAloD0MIsrrVc5IDcUCUhpRSlGgVS9RoFkdAsVTqTaCcw3V9lChoBmgJaA9DCI55HXEIynJAlIaUUpRoFUvXaBZHQLFVBrOJLuh1fZQoaAZoCWgPQwhpNo/DYD9wQJSGlFKUaBVLtGgWR0CxVScUqQRxdX2UKGgGaAloD0MICTNt/4opc0CUhpRSlGgVS9FoFkdAsVUzI0ZWJnV9lChoBmgJaA9DCPOspBWff3BAlIaUUpRoFUu8aBZHQLFVS0SAYpF1fZQoaAZoCWgPQwgSoRFsnDVxQJSGlFKUaBVL1GgWR0CxVVP5ckdFdX2UKGgGaAloD0MIg2xZvi6ZRECUhpRSlGgVS4toFkdAsVVqWcBltnV9lChoBmgJaA9DCE+xahDmLnFAlIaUUpRoFUu1aBZHQLFVfrNGEwp1fZQoaAZoCWgPQwjy0eKMIY9yQJSGlFKUaBVL0WgWR0CxVaAKnei0dX2UKGgGaAloD0MIjSYXY2CZc0CUhpRSlGgVS8loFkdAsVW4xk/bCnV9lChoBmgJaA9DCNk/TwNGRnJAlIaUUpRoFUvGaBZHQLFVv19fCyh1fZQoaAZoCWgPQwgn28AdqFdwQJSGlFKUaBVLr2gWR0CxVci48U22dX2UKGgGaAloD0MI7PZZZeZxcUCUhpRSlGgVS7RoFkdAsVXRcB2fTXV9lChoBmgJaA9DCJoklpR7kHBAlIaUUpRoFUvYaBZHQLFV2wJgLJF1fZQoaAZoCWgPQwiKkSVz7C9zQJSGlFKUaBVL2WgWR0CxVfJmEoOQdX2UKGgGaAloD0MI9+eiIWNWcUCUhpRSlGgVS9toFkdAsVYpYGMXJ3V9lChoBmgJaA9DCDcZVYZxn29AlIaUUpRoFUu3aBZHQLFWKujh1kl1fZQoaAZoCWgPQwi3fvrP2k1zQJSGlFKUaBVL1mgWR0CxVkoBNmDldX2UKGgGaAloD0MILBA9KZOAcUCUhpRSlGgVS7JoFkdAsVZkqlP8AXV9lChoBmgJaA9DCFbWNsXjFXJAlIaUUpRoFUvIaBZHQLFWayJ9Aop1fZQoaAZoCWgPQwjbFI+LqhBxQJSGlFKUaBVL7GgWR0CxVpi1/lQudX2UKGgGaAloD0MIGcVyS2uOckCUhpRSlGgVS89oFkdAsW5GmhufmXV9lChoBmgJaA9DCE+sU+X7CnJAlIaUUpRoFUvCaBZHQLFufelbeM11fZQoaAZoCWgPQwhxkXu6uu1vQJSGlFKUaBVLvGgWR0Cxbon+ZPVNdX2UKGgGaAloD0MIdO/hkmNmckCUhpRSlGgVS85oFkdAsW6dvXK8tnV9lChoBmgJaA9DCGUaTS4G3nJAlIaUUpRoFUvtaBZHQLFuoYao/A11fZQoaAZoCWgPQwhjC0EOClBxQJSGlFKUaBVLxmgWR0CxbqZkK/mDdX2UKGgGaAloD0MIuf5dnznWcECUhpRSlGgVS7xoFkdAsW6y0lZ5iXV9lChoBmgJaA9DCOUrgZQY53NAlIaUUpRoFUvtaBZHQLFuu2GIsRR1fZQoaAZoCWgPQwj7srRTs/dxQJSGlFKUaBVLsWgWR0CxbtoP9UCJdX2UKGgGaAloD0MIUYU/w1tkcUCUhpRSlGgVS8RoFkdAsW731ct5EHV9lChoBmgJaA9DCL9J06CoHnFAlIaUUpRoFUvJaBZHQLFvPGvwEyN1fZQoaAZoCWgPQwjIl1DBIRBzQJSGlFKUaBVNAAJoFkdAsW9B5ooNNXV9lChoBmgJaA9DCMKJ6NeWwXFAlIaUUpRoFUvfaBZHQLFvY8E3bVV1fZQoaAZoCWgPQwhYkjzX94tyQJSGlFKUaBVLu2gWR0Cxb2q9oN/fdX2UKGgGaAloD0MIbmjKTj/yUkCUhpRSlGgVS6BoFkdAsW90a/ATI3V9lChoBmgJaA9DCF7acFjabnNAlIaUUpRoFUvNaBZHQLFvddRBNVR1fZQoaAZoCWgPQwgHswkw7CVwQJSGlFKUaBVLvWgWR0Cxb6XUYsNEdX2UKGgGaAloD0MIwHebNw7lcUCUhpRSlGgVS7hoFkdAsW/N2bG3nnV9lChoBmgJaA9DCAbZsnzd+HBAlIaUUpRoFUvNaBZHQLFvz+NtIkJ1fZQoaAZoCWgPQwhe29stSYpuQJSGlFKUaBVLz2gWR0Cxb9sGTs6adX2UKGgGaAloD0MIzLc+rPePcUCUhpRSlGgVS9JoFkdAsW/rYukDZHV9lChoBmgJaA9DCCKnr+frnXFAlIaUUpRoFUu6aBZHQLFv8AwPAfx1fZQoaAZoCWgPQwiy9KELanJxQJSGlFKUaBVLtmgWR0CxcAYJeE7GdX2UKGgGaAloD0MIHVvPEA4CdECUhpRSlGgVS/RoFkdAsXAKjEehf3V9lChoBmgJaA9DCE93nniOnnJAlIaUUpRoFU2GAWgWR0CxcDIQ4CIUdX2UKGgGaAloD0MIiZtTyQBXb0CUhpRSlGgVS7NoFkdAsXA/ewcHW3V9lChoBmgJaA9DCIqtoGkJ/nBAlIaUUpRoFUvNaBZHQLFwXMVk+X91fZQoaAZoCWgPQwjiAPp9/3BwQJSGlFKUaBVLx2gWR0CxcIB3A2ycdX2UKGgGaAloD0MIEJGadvHsckCUhpRSlGgVS8xoFkdAsXCBZEDyOXV9lChoBmgJaA9DCAdhbvcy8XFAlIaUUpRoFUvFaBZHQLFwhf+jua51fZQoaAZoCWgPQwh5JF6eDg1xQJSGlFKUaBVLxWgWR0CxcIc7+1jRdX2UKGgGaAloD0MIY+3vbM9pcECUhpRSlGgVTWADaBZHQLFwniblRxd1fZQoaAZoCWgPQwjT+IVXEhxvQJSGlFKUaBVLuGgWR0CxcKN56dDqdX2UKGgGaAloD0MI1As+zYnUcECUhpRSlGgVS8RoFkdAsXDQ57w8XHV9lChoBmgJaA9DCBEcl3GTU3FAlIaUUpRoFUvEaBZHQLFw0rqt5lh1fZQoaAZoCWgPQwjwiuB/K2RxQJSGlFKUaBVLwmgWR0CxcOahHskZdX2UKGgGaAloD0MItfl/1dHtckCUhpRSlGgVS8RoFkdAsXDtNqQA/HV9lChoBmgJaA9DCFA5Jot7I3FAlIaUUpRoFUuaaBZHQLFw9c9nscB1fZQoaAZoCWgPQwj9EYYBizZxQJSGlFKUaBVLzGgWR0CxcQ34TK1YdX2UKGgGaAloD0MIOh+eJQhhckCUhpRSlGgVS/9oFkdAsXEi9Htnf3V9lChoBmgJaA9DCNgPscGChHBAlIaUUpRoFUviaBZHQLFxJPbwjMV1fZQoaAZoCWgPQwgLR5BKsdZzQJSGlFKUaBVLyGgWR0CxcTlzhgmadX2UKGgGaAloD0MIn8vUJPjJckCUhpRSlGgVS7hoFkdAsXFA9mpVCHV9lChoBmgJaA9DCFa7JqQ1025AlIaUUpRoFUujaBZHQLFxYAUtZmt1fZQoaAZoCWgPQwjsLlBS4IFvQJSGlFKUaBVLzWgWR0CxcYB4yGi6dX2UKGgGaAloD0MIKCob1lQpb0CUhpRSlGgVS7loFkdAsXGEq2Bre3V9lChoBmgJaA9DCOIeSx+61G9AlIaUUpRoFUvdaBZHQLFxlqJuVHF1fZQoaAZoCWgPQwhVppiDYClzQJSGlFKUaBVL6GgWR0CxcZ6hpQDWdX2UKGgGaAloD0MIFY4glWLTR0CUhpRSlGgVS5doFkdAsXGhafSQYHV9lChoBmgJaA9DCELtt3ZiPXFAlIaUUpRoFUvGaBZHQLFxw3dbgTB1fZQoaAZoCWgPQwhh4/p3vWNyQJSGlFKUaBVNCAFoFkdAsXHE7FKkEnV9lChoBmgJaA9DCBr5vOIpKXJAlIaUUpRoFUvHaBZHQLFxxphF3IN1fZQoaAZoCWgPQwjOpbiq7ChyQJSGlFKUaBVL1mgWR0CxcfOWOZLJdX2UKGgGaAloD0MIk8X9R+bJckCUhpRSlGgVS9BoFkdAsXIPDuSfUXV9lChoBmgJaA9DCAOZnUUvCXJAlIaUUpRoFUu1aBZHQLFyG8Empl11fZQoaAZoCWgPQwhfXoB99ExzQJSGlFKUaBVL9GgWR0CxciS9EkSmdX2UKGgGaAloD0MI4q3zb1fVcUCUhpRSlGgVS9ZoFkdAsXIvvJA+p3V9lChoBmgJaA9DCDCA8KFE+G9AlIaUUpRoFUvFaBZHQLFyOTOgQH11fZQoaAZoCWgPQwjcKoiBbn9zQJSGlFKUaBVL92gWR0CxclbBsQ/YdX2UKGgGaAloD0MIGw5LA/8uckCUhpRSlGgVS85oFkdAsXJldxAB1nV9lChoBmgJaA9DCEt2bAQibHFAlIaUUpRoFUutaBZHQLFydv114gR1fZQoaAZoCWgPQwioUx7dSExwQJSGlFKUaBVL0mgWR0CxcooScslLdX2UKGgGaAloD0MIAU2EDU9FcECUhpRSlGgVS7hoFkdAsXKJtYSxq3V9lChoBmgJaA9DCIuKOJ3kHHFAlIaUUpRoFUvuaBZHQLFysDQZ4wB1fZQoaAZoCWgPQwjVrglpDVBxQJSGlFKUaBVL4mgWR0CxcrKakRBedX2UKGgGaAloD0MIpddmY6Vpc0CUhpRSlGgVS8xoFkdAsXLIeaKDTXV9lChoBmgJaA9DCLdif9m9qnFAlIaUUpRoFUvSaBZHQLFyzSIxgzB1fZQoaAZoCWgPQwj+CpkrA7ZuQJSGlFKUaBVLvmgWR0CxcuY/7iyZdX2UKGgGaAloD0MI48eYu9YTcECUhpRSlGgVS6loFkdAsXL7gEU0vXV9lChoBmgJaA9DCCsYldSJXHJAlIaUUpRoFUu9aBZHQLFzIcKw6hh1fZQoaAZoCWgPQwjKqZ1h6hByQJSGlFKUaBVNFwFoFkdAsXMp0U47zXV9lChoBmgJaA9DCL3kf/K3fHNAlIaUUpRoFUveaBZHQLFzOZjQRf51fZQoaAZoCWgPQwid9L7x9RZyQJSGlFKUaBVLp2gWR0Cxcz1donKGdX2UKGgGaAloD0MI5SZqaS7fcUCUhpRSlGgVS8FoFkdAsXNPUYsND3V9lChoBmgJaA9DCAB0mC/v7XFAlIaUUpRoFUv7aBZHQLFzUciW3Sd1fZQoaAZoCWgPQwg4ns+AuhBxQJSGlFKUaBVL62gWR0Cxc2UrwvxpdX2UKGgGaAloD0MId0tywG40ckCUhpRSlGgVS9ZoFkdAsXOIl2NedHVlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 1380,
80
- "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 20,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafc81ef670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafc81ef700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafc81ef790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafc81ef820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fafc81ef8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fafc81ef940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafc81ef9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafc81efa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fafc81efaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafc81efb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafc81efc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafc81efca0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fafc81e9960>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 10027008,
47
+ "_total_timesteps": 10000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1673877411164881137,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI35tb3vhEs9C4TAPjrzqr5vmxy9HwY8PgAAAAAAAAAAzQG4PY4ruD2lcza+AcSxvtftyz1wS9q8AAAAAAAAAACmS2k+OQSIPsb3575GLhK/xZ4RPhLxV74AAAAAAAAAAACjozzcvwk++zrGvGxzD79AujY9T4MJPQAAAAAAAAAAzRVrPlT2mD5oytW+T4cdv2AUSD5OtYW+AAAAAAAAAADgKVO+4iBoP50YsL6wVkm/kn0Bv0bMkr0AAAAAAAAAAKa88z39xxE/HoIhPdLrb7/wD0g+2BzBvQAAAAAAAAAAzdpIvHHNVLkj3fs89Iwvs2MekDsrcmyzAACAPwAAgD8zs+C8j9pTupO61TZP0eUxxnI0Owio/rUAAIA/AACAPzMi/rwDba8/bQP+vrWFu74xgBg88NdzvQAAAAAAAAAAzbhvPI96L7paj4S5CRtktPi3uLvZh504AACAPwAAgD9mCl29wmylP/McO74dmAm/k22+vSz/H74AAAAAAAAAADO5aj7+ASM/P2ArPRXvQb9/OsQ+BscFvgAAAAAAAAAAZsKhu8OJfrp+shO8yfKIPAcgmjqeG289AACAPwAAgD8a+zO9F8mtP30wNr/ed+u+ljSoPNs87rwAAAAAAAAAAGbRcT26Aro/piJZPgu8Wb5+Ljc9jXFWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0027007999999999477,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzsXf9kRnc0CUhpRSlIwBbJRLwIwBdJRHQMtci66jFhp1fZQoaAZoCWgPQwhdcAZ/v8RAQJSGlFKUaBVLa2gWR0DLXJTK5kLAdX2UKGgGaAloD0MI4NqJktCbc0CUhpRSlGgVS5loFkdAy1ydzvqkdnV9lChoBmgJaA9DCGZMwRonH3NAlIaUUpRoFUukaBZHQMtco+rdWQx1fZQoaAZoCWgPQwhJERlWMZpwQJSGlFKUaBVLp2gWR0DLXKbZpSJkdX2UKGgGaAloD0MIRIXq5mI7cUCUhpRSlGgVS5ZoFkdAy1yoOe8PF3V9lChoBmgJaA9DCJombD/ZT3FAlIaUUpRoFUusaBZHQMtcrEv0yxl1fZQoaAZoCWgPQwgD0ChdOixzQJSGlFKUaBVLuGgWR0DLXLMhzNlidX2UKGgGaAloD0MIUKbR5OIsdECUhpRSlGgVS8loFkdAy1zPgCwKSnV9lChoBmgJaA9DCNEEiljEHm9AlIaUUpRoFUucaBZHQMtcz21D0Dl1fZQoaAZoCWgPQwh1yqMboVNyQJSGlFKUaBVLiWgWR0DLXNM/nnuBdX2UKGgGaAloD0MITfT5KGNAc0CUhpRSlGgVS7loFkdAy1zWWqtHQXV9lChoBmgJaA9DCM3km22uUXNAlIaUUpRoFUu2aBZHQMtc2MspXp51fZQoaAZoCWgPQwhhi90+a2hxQJSGlFKUaBVLlWgWR0DLXNmYYzi0dX2UKGgGaAloD0MIPE88Z0uUdECUhpRSlGgVS79oFkdAy1zi9bHIZXV9lChoBmgJaA9DCJcbDHUYSnNAlIaUUpRoFUubaBZHQMtc5Co0hvB1fZQoaAZoCWgPQwjPLAlQ0ytzQJSGlFKUaBVLwGgWR0DLXPf/YJ3QdX2UKGgGaAloD0MIfbPNjemKcECUhpRSlGgVS5hoFkdAy1z9yjHn2nV9lChoBmgJaA9DCGRZMPFH4XJAlIaUUpRoFUu4aBZHQMtc/ffGdZt1fZQoaAZoCWgPQwi214LeG7pxQJSGlFKUaBVLumgWR0DLXQgNgBtDdX2UKGgGaAloD0MIlpaReg+gckCUhpRSlGgVS6xoFkdAy10KgqVhTnV9lChoBmgJaA9DCGCrBItDN3JAlIaUUpRoFUusaBZHQMtdDpxeb/h1fZQoaAZoCWgPQwhZFHZRNKFyQJSGlFKUaBVLu2gWR0DLXQ6e9SMtdX2UKGgGaAloD0MIoMIRpJLfckCUhpRSlGgVS7doFkdAy10dVmSQo3V9lChoBmgJaA9DCF7ZBYNrGG9AlIaUUpRoFUuWaBZHQMtdKJXyRSx1fZQoaAZoCWgPQwhBvK5f8D9yQJSGlFKUaBVLnmgWR0DLXSmL1mJ4dX2UKGgGaAloD0MI7j1cctzdb0CUhpRSlGgVS5JoFkdAy10qzQ/oq3V9lChoBmgJaA9DCM3n3O26pnJAlIaUUpRoFUupaBZHQMtdLyKFZgZ1fZQoaAZoCWgPQwg+IqZEEmxxQJSGlFKUaBVLrGgWR0DLXTcu3+dcdX2UKGgGaAloD0MIeSRens5CcUCUhpRSlGgVS65oFkdAy106yP+4snV9lChoBmgJaA9DCNW0i2kmi3JAlIaUUpRoFUuxaBZHQMtdRl6zE751fZQoaAZoCWgPQwg/NzRl52tyQJSGlFKUaBVLvGgWR0DLXUtc8kledX2UKGgGaAloD0MIh/vIrclHdECUhpRSlGgVS65oFkdAy11bAymALHV9lChoBmgJaA9DCLXAHhMpyG5AlIaUUpRoFUuYaBZHQMtdXtrj5sV1fZQoaAZoCWgPQwhAMbJkDkpwQJSGlFKUaBVLrWgWR0DLXWBaaCtjdX2UKGgGaAloD0MI4xbzc8Nuc0CUhpRSlGgVS59oFkdAy11lP9kz43V9lChoBmgJaA9DCDsA4q4eZXNAlIaUUpRoFUu8aBZHQMtdaPZ7HAB1fZQoaAZoCWgPQwgBpDZxMtpxQJSGlFKUaBVLrGgWR0DLXXBxiobXdX2UKGgGaAloD0MIycaDLfZxc0CUhpRSlGgVS7hoFkdAy112yFfzBnV9lChoBmgJaA9DCPG76ZbdrXJAlIaUUpRoFUuqaBZHQMtde8TrVvx1fZQoaAZoCWgPQwjZs+cyNS5xQJSGlFKUaBVLnWgWR0DLXYHFUADJdX2UKGgGaAloD0MIHVa45WN8cUCUhpRSlGgVS5poFkdAy12EWUKRdXV9lChoBmgJaA9DCJBKsaPxvHFAlIaUUpRoFUuqaBZHQMtdhmCqZMN1fZQoaAZoCWgPQwh6VtKKb0tyQJSGlFKUaBVLq2gWR0DLXYfegte2dX2UKGgGaAloD0MIcHmsGVkacECUhpRSlGgVS5RoFkdAy12MTAWSEHV9lChoBmgJaA9DCNRfr7CgVnJAlIaUUpRoFUuhaBZHQMtdj61b7j11fZQoaAZoCWgPQwjyttJrs2tzQJSGlFKUaBVLsGgWR0DLXaxVKf4AdX2UKGgGaAloD0MIt2J/2b2jcUCUhpRSlGgVS59oFkdAy12wkVvddnV9lChoBmgJaA9DCLVQMjm1TXJAlIaUUpRoFUuOaBZHQMtdtR3u/lB1fZQoaAZoCWgPQwhZ+WUwRph0QJSGlFKUaBVLzWgWR0DLXbhMrVe8dX2UKGgGaAloD0MIhZZ1/xhfckCUhpRSlGgVS5FoFkdAy12+5AhStXV9lChoBmgJaA9DCDykGCBRAXJAlIaUUpRoFUunaBZHQMtdv+8XenB1fZQoaAZoCWgPQwgNUYU/g4txQJSGlFKUaBVLuGgWR0DLXcLaGpMpdX2UKGgGaAloD0MIb4CZ72CJcUCUhpRSlGgVS45oFkdAy13Dx+az/3V9lChoBmgJaA9DCCnqzD2k/XJAlIaUUpRoFUu2aBZHQMtdw2A5Jbt1fZQoaAZoCWgPQwgYB5eOeQxxQJSGlFKUaBVLlmgWR0DLXdeZqmCRdX2UKGgGaAloD0MIQkEpWjnxc0CUhpRSlGgVS7RoFkdAy13mrf+CLHV9lChoBmgJaA9DCA02dR5VEnJAlIaUUpRoFUuvaBZHQMtd6vOpsGh1fZQoaAZoCWgPQwhVhQZi2Wd0QJSGlFKUaBVLyGgWR0DLXet/jKgadX2UKGgGaAloD0MIgpGXNXEwckCUhpRSlGgVS6RoFkdAy13tVsDW9XV9lChoBmgJaA9DCKeSAaCKwXJAlIaUUpRoFUu4aBZHQMtd7sQ2/BZ1fZQoaAZoCWgPQwjXNO84xflxQJSGlFKUaBVLs2gWR0DLXfKwt8NQdX2UKGgGaAloD0MIQInPnSDGckCUhpRSlGgVS6ZoFkdAy14V1schknV9lChoBmgJaA9DCAeynlo9cnFAlIaUUpRoFUupaBZHQMteG1vMr3F1fZQoaAZoCWgPQwha9E4F3M9wQJSGlFKUaBVLtWgWR0DLXhsx46fbdX2UKGgGaAloD0MIpx/URQqCdECUhpRSlGgVS8NoFkdAy14fHlOoHnV9lChoBmgJaA9DCJ5eKcsQr3JAlIaUUpRoFUudaBZHQMteIBvze411fZQoaAZoCWgPQwhtb7ckx0ZyQJSGlFKUaBVLtmgWR0DLXinpljEvdX2UKGgGaAloD0MIKZXwhB4ic0CUhpRSlGgVS7VoFkdAy14tSqlxfnV9lChoBmgJaA9DCG+e6pCbl3RAlIaUUpRoFUvIaBZHQMteNInjQzF1fZQoaAZoCWgPQwj4F0Fjpu1yQJSGlFKUaBVLymgWR0DLXjk3IdU9dX2UKGgGaAloD0MI2/tUFVqOcECUhpRSlGgVS4ZoFkdAy1474Z/CqXV9lChoBmgJaA9DCNLGEWtxT3JAlIaUUpRoFUuTaBZHQMteQB2GIsR1fZQoaAZoCWgPQwh7FRkdEKNyQJSGlFKUaBVLtmgWR0DLXkGokzGhdX2UKGgGaAloD0MI1PAtrBuPcUCUhpRSlGgVS65oFkdAy15OVSn+AHV9lChoBmgJaA9DCEw1s5YCD3NAlIaUUpRoFUu4aBZHQMteUBNM4951fZQoaAZoCWgPQwifrYODfRJzQJSGlFKUaBVLu2gWR0DLXld1ZDArdX2UKGgGaAloD0MIfa1LjRDXckCUhpRSlGgVS7xoFkdAy15dMt9QXXV9lChoBmgJaA9DCGB2Tx4WY3FAlIaUUpRoFUulaBZHQMteeZwn6VN1fZQoaAZoCWgPQwi6FFeV/ShzQJSGlFKUaBVLh2gWR0DLXnp3kgfVdX2UKGgGaAloD0MIhcyVQfUKdECUhpRSlGgVS7hoFkdAy16A7pV0cXV9lChoBmgJaA9DCEHyzqEMXHFAlIaUUpRoFUupaBZHQMtegJaiblR1fZQoaAZoCWgPQwhBZJEmXuJzQJSGlFKUaBVLqWgWR0DLXoHNHH3ldX2UKGgGaAloD0MIRpiiXJprc0CUhpRSlGgVS8NoFkdAy16M3hn8K3V9lChoBmgJaA9DCETecvXjqnNAlIaUUpRoFUu3aBZHQMtek8an7551fZQoaAZoCWgPQwhKXp1jwHhwQJSGlFKUaBVLnWgWR0DLXpV0xM37dX2UKGgGaAloD0MIizcyj7xxc0CUhpRSlGgVS61oFkdAy16ZHU+cIHV9lChoBmgJaA9DCGsr9pfda3BAlIaUUpRoFUuXaBZHQMtemn6l+E11fZQoaAZoCWgPQwhcc0f/SzhzQJSGlFKUaBVLvGgWR0DLXqjDsMRZdX2UKGgGaAloD0MIo1aYvlcjc0CUhpRSlGgVS6RoFkdAy16t8BuGbnV9lChoBmgJaA9DCN/CuvFuV3JAlIaUUpRoFUujaBZHQMterylFc6h1fZQoaAZoCWgPQwjzABb5dYRyQJSGlFKUaBVLw2gWR0DLXrCT4cm0dX2UKGgGaAloD0MIrMWnAJiucUCUhpRSlGgVS6hoFkdAy164uq3mWHV9lChoBmgJaA9DCPdbO1GSRXJAlIaUUpRoFUuFaBZHQMtew4cm0E51fZQoaAZoCWgPQwgNNJ9zNydyQJSGlFKUaBVLtmgWR0DLXsSbUgB+dX2UKGgGaAloD0MIj3Ba8CI4cECUhpRSlGgVS41oFkdAy17M48U21nV9lChoBmgJaA9DCLxcxHciBnFAlIaUUpRoFUudaBZHQMte1XiR4hV1fZQoaAZoCWgPQwjyP/m7dzFyQJSGlFKUaBVLnmgWR0DLXta704BFdX2UKGgGaAloD0MIOBH92npicUCUhpRSlGgVS4doFkdAy17hVBD5TXV9lChoBmgJaA9DCMr5Yu8FwHJAlIaUUpRoFUu7aBZHQMte4QoTfzl1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 9180,
80
+ "n_steps": 2048,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.9,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 30,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
LL3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6199c648cbfd0e14c3ca73ba632c4c6310b6853e61abbc01989f4f59300fe5b8
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ea364b732d0798d20918b44f077e9fa14f5eac820a01e941a6112068e7e9d0a
3
  size 87929
LL3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9bc254e9e57ecbc030470bed683c537c581c091aa8c2d771c06c9f19caf0b409
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d286a13b8280c3108ebdd6d25352a5e423cd4ae556e19f23fbeaf99a790cf9
3
  size 43393
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 261.81 +/- 35.62
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 301.77 +/- 13.83
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd331876c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd331876ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd331876d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd331876dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fd331876e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fd331876ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd331876f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd33187a040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd33187a0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd33187a160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd33187a1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd33187a280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd33186df60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673793209022593506, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADA+nj4GTl8/7SJPPpM0Hr8iBt8+rtcjvQAAAAAAAAAAmgY0vWwfqD/KC+e+FYMWv5XCVrwOGzC+AAAAAAAAAAAA6h48I1IOP8+7u713Gyq/T57qPWJimb0AAAAAAAAAAE00F71Iy7W6ijgbuF6FGbPEEBC6LUoxNwAAgD8AAIA/wEHAvfaEZrqqXjyzS8UlsBbcmDrcT8YzAACAPwAAgD+mlpY9eDbwPNxBsr50D3q+JQdevrOJCb0AAAAAAAAAAAAs2ztci2W6vOwXPustW7ZUyY84E0RStQAAgD8AAIA/GtRUvVKPJj7x65g9vnylvrXv47ytc9O8AAAAAAAAAABT0wI+nwWEuyZzVT2nhse7/kH1vFSVqrwAAIA/AACAP7MMmD7nAUY/i5DZPZuNKr/oo8A+fulMvgAAAAAAAAAADbSTvRSPuD6E2jO9O00Sv0Kflb0Nw+c8AAAAAAAAAACaqtA8pFgGOl4YTTNTOOWuSjQwO5MTvLMAAIA/AACAP1oOOb5KZaU+TlmOPrK4pL5Qi7C9/Sx1PgAAAAAAAAAAmgkzPeliTrw6FyO+XFQVPF5Jtj32/f28AACAPwAAgD8T9gC+8MVrP6w8kb45DCm/sxF8vmZnkb0AAAAAAAAAACDcAL64xIs+oU6cPa9Htr5oBo29coWBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInBa86GuqckCUhpRSlIwBbJRL24wBdJRHQLFU3QhfShJ1fZQoaAZoCWgPQwiuSExQA1JzQJSGlFKUaBVL5GgWR0CxVOi08eS0dX2UKGgGaAloD0MIsrrVc5IDcUCUhpRSlGgVS9RoFkdAsVTqTaCcw3V9lChoBmgJaA9DCI55HXEIynJAlIaUUpRoFUvXaBZHQLFVBrOJLuh1fZQoaAZoCWgPQwhpNo/DYD9wQJSGlFKUaBVLtGgWR0CxVScUqQRxdX2UKGgGaAloD0MICTNt/4opc0CUhpRSlGgVS9FoFkdAsVUzI0ZWJnV9lChoBmgJaA9DCPOspBWff3BAlIaUUpRoFUu8aBZHQLFVS0SAYpF1fZQoaAZoCWgPQwgSoRFsnDVxQJSGlFKUaBVL1GgWR0CxVVP5ckdFdX2UKGgGaAloD0MIg2xZvi6ZRECUhpRSlGgVS4toFkdAsVVqWcBltnV9lChoBmgJaA9DCE+xahDmLnFAlIaUUpRoFUu1aBZHQLFVfrNGEwp1fZQoaAZoCWgPQwjy0eKMIY9yQJSGlFKUaBVL0WgWR0CxVaAKnei0dX2UKGgGaAloD0MIjSYXY2CZc0CUhpRSlGgVS8loFkdAsVW4xk/bCnV9lChoBmgJaA9DCNk/TwNGRnJAlIaUUpRoFUvGaBZHQLFVv19fCyh1fZQoaAZoCWgPQwgn28AdqFdwQJSGlFKUaBVLr2gWR0CxVci48U22dX2UKGgGaAloD0MI7PZZZeZxcUCUhpRSlGgVS7RoFkdAsVXRcB2fTXV9lChoBmgJaA9DCJoklpR7kHBAlIaUUpRoFUvYaBZHQLFV2wJgLJF1fZQoaAZoCWgPQwiKkSVz7C9zQJSGlFKUaBVL2WgWR0CxVfJmEoOQdX2UKGgGaAloD0MI9+eiIWNWcUCUhpRSlGgVS9toFkdAsVYpYGMXJ3V9lChoBmgJaA9DCDcZVYZxn29AlIaUUpRoFUu3aBZHQLFWKujh1kl1fZQoaAZoCWgPQwi3fvrP2k1zQJSGlFKUaBVL1mgWR0CxVkoBNmDldX2UKGgGaAloD0MILBA9KZOAcUCUhpRSlGgVS7JoFkdAsVZkqlP8AXV9lChoBmgJaA9DCFbWNsXjFXJAlIaUUpRoFUvIaBZHQLFWayJ9Aop1fZQoaAZoCWgPQwjbFI+LqhBxQJSGlFKUaBVL7GgWR0CxVpi1/lQudX2UKGgGaAloD0MIGcVyS2uOckCUhpRSlGgVS89oFkdAsW5GmhufmXV9lChoBmgJaA9DCE+sU+X7CnJAlIaUUpRoFUvCaBZHQLFufelbeM11fZQoaAZoCWgPQwhxkXu6uu1vQJSGlFKUaBVLvGgWR0Cxbon+ZPVNdX2UKGgGaAloD0MIdO/hkmNmckCUhpRSlGgVS85oFkdAsW6dvXK8tnV9lChoBmgJaA9DCGUaTS4G3nJAlIaUUpRoFUvtaBZHQLFuoYao/A11fZQoaAZoCWgPQwhjC0EOClBxQJSGlFKUaBVLxmgWR0CxbqZkK/mDdX2UKGgGaAloD0MIuf5dnznWcECUhpRSlGgVS7xoFkdAsW6y0lZ5iXV9lChoBmgJaA9DCOUrgZQY53NAlIaUUpRoFUvtaBZHQLFuu2GIsRR1fZQoaAZoCWgPQwj7srRTs/dxQJSGlFKUaBVLsWgWR0CxbtoP9UCJdX2UKGgGaAloD0MIUYU/w1tkcUCUhpRSlGgVS8RoFkdAsW731ct5EHV9lChoBmgJaA9DCL9J06CoHnFAlIaUUpRoFUvJaBZHQLFvPGvwEyN1fZQoaAZoCWgPQwjIl1DBIRBzQJSGlFKUaBVNAAJoFkdAsW9B5ooNNXV9lChoBmgJaA9DCMKJ6NeWwXFAlIaUUpRoFUvfaBZHQLFvY8E3bVV1fZQoaAZoCWgPQwhYkjzX94tyQJSGlFKUaBVLu2gWR0Cxb2q9oN/fdX2UKGgGaAloD0MIbmjKTj/yUkCUhpRSlGgVS6BoFkdAsW90a/ATI3V9lChoBmgJaA9DCF7acFjabnNAlIaUUpRoFUvNaBZHQLFvddRBNVR1fZQoaAZoCWgPQwgHswkw7CVwQJSGlFKUaBVLvWgWR0Cxb6XUYsNEdX2UKGgGaAloD0MIwHebNw7lcUCUhpRSlGgVS7hoFkdAsW/N2bG3nnV9lChoBmgJaA9DCAbZsnzd+HBAlIaUUpRoFUvNaBZHQLFvz+NtIkJ1fZQoaAZoCWgPQwhe29stSYpuQJSGlFKUaBVLz2gWR0Cxb9sGTs6adX2UKGgGaAloD0MIzLc+rPePcUCUhpRSlGgVS9JoFkdAsW/rYukDZHV9lChoBmgJaA9DCCKnr+frnXFAlIaUUpRoFUu6aBZHQLFv8AwPAfx1fZQoaAZoCWgPQwiy9KELanJxQJSGlFKUaBVLtmgWR0CxcAYJeE7GdX2UKGgGaAloD0MIHVvPEA4CdECUhpRSlGgVS/RoFkdAsXAKjEehf3V9lChoBmgJaA9DCE93nniOnnJAlIaUUpRoFU2GAWgWR0CxcDIQ4CIUdX2UKGgGaAloD0MIiZtTyQBXb0CUhpRSlGgVS7NoFkdAsXA/ewcHW3V9lChoBmgJaA9DCIqtoGkJ/nBAlIaUUpRoFUvNaBZHQLFwXMVk+X91fZQoaAZoCWgPQwjiAPp9/3BwQJSGlFKUaBVLx2gWR0CxcIB3A2ycdX2UKGgGaAloD0MIEJGadvHsckCUhpRSlGgVS8xoFkdAsXCBZEDyOXV9lChoBmgJaA9DCAdhbvcy8XFAlIaUUpRoFUvFaBZHQLFwhf+jua51fZQoaAZoCWgPQwh5JF6eDg1xQJSGlFKUaBVLxWgWR0CxcIc7+1jRdX2UKGgGaAloD0MIY+3vbM9pcECUhpRSlGgVTWADaBZHQLFwniblRxd1fZQoaAZoCWgPQwjT+IVXEhxvQJSGlFKUaBVLuGgWR0CxcKN56dDqdX2UKGgGaAloD0MI1As+zYnUcECUhpRSlGgVS8RoFkdAsXDQ57w8XHV9lChoBmgJaA9DCBEcl3GTU3FAlIaUUpRoFUvEaBZHQLFw0rqt5lh1fZQoaAZoCWgPQwjwiuB/K2RxQJSGlFKUaBVLwmgWR0CxcOahHskZdX2UKGgGaAloD0MItfl/1dHtckCUhpRSlGgVS8RoFkdAsXDtNqQA/HV9lChoBmgJaA9DCFA5Jot7I3FAlIaUUpRoFUuaaBZHQLFw9c9nscB1fZQoaAZoCWgPQwj9EYYBizZxQJSGlFKUaBVLzGgWR0CxcQ34TK1YdX2UKGgGaAloD0MIOh+eJQhhckCUhpRSlGgVS/9oFkdAsXEi9Htnf3V9lChoBmgJaA9DCNgPscGChHBAlIaUUpRoFUviaBZHQLFxJPbwjMV1fZQoaAZoCWgPQwgLR5BKsdZzQJSGlFKUaBVLyGgWR0CxcTlzhgmadX2UKGgGaAloD0MIn8vUJPjJckCUhpRSlGgVS7hoFkdAsXFA9mpVCHV9lChoBmgJaA9DCFa7JqQ1025AlIaUUpRoFUujaBZHQLFxYAUtZmt1fZQoaAZoCWgPQwjsLlBS4IFvQJSGlFKUaBVLzWgWR0CxcYB4yGi6dX2UKGgGaAloD0MIKCob1lQpb0CUhpRSlGgVS7loFkdAsXGEq2Bre3V9lChoBmgJaA9DCOIeSx+61G9AlIaUUpRoFUvdaBZHQLFxlqJuVHF1fZQoaAZoCWgPQwhVppiDYClzQJSGlFKUaBVL6GgWR0CxcZ6hpQDWdX2UKGgGaAloD0MIFY4glWLTR0CUhpRSlGgVS5doFkdAsXGhafSQYHV9lChoBmgJaA9DCELtt3ZiPXFAlIaUUpRoFUvGaBZHQLFxw3dbgTB1fZQoaAZoCWgPQwhh4/p3vWNyQJSGlFKUaBVNCAFoFkdAsXHE7FKkEnV9lChoBmgJaA9DCBr5vOIpKXJAlIaUUpRoFUvHaBZHQLFxxphF3IN1fZQoaAZoCWgPQwjOpbiq7ChyQJSGlFKUaBVL1mgWR0CxcfOWOZLJdX2UKGgGaAloD0MIk8X9R+bJckCUhpRSlGgVS9BoFkdAsXIPDuSfUXV9lChoBmgJaA9DCAOZnUUvCXJAlIaUUpRoFUu1aBZHQLFyG8Empl11fZQoaAZoCWgPQwhfXoB99ExzQJSGlFKUaBVL9GgWR0CxciS9EkSmdX2UKGgGaAloD0MI4q3zb1fVcUCUhpRSlGgVS9ZoFkdAsXIvvJA+p3V9lChoBmgJaA9DCDCA8KFE+G9AlIaUUpRoFUvFaBZHQLFyOTOgQH11fZQoaAZoCWgPQwjcKoiBbn9zQJSGlFKUaBVL92gWR0CxclbBsQ/YdX2UKGgGaAloD0MIGw5LA/8uckCUhpRSlGgVS85oFkdAsXJldxAB1nV9lChoBmgJaA9DCEt2bAQibHFAlIaUUpRoFUutaBZHQLFydv114gR1fZQoaAZoCWgPQwioUx7dSExwQJSGlFKUaBVL0mgWR0CxcooScslLdX2UKGgGaAloD0MIAU2EDU9FcECUhpRSlGgVS7hoFkdAsXKJtYSxq3V9lChoBmgJaA9DCIuKOJ3kHHFAlIaUUpRoFUvuaBZHQLFysDQZ4wB1fZQoaAZoCWgPQwjVrglpDVBxQJSGlFKUaBVL4mgWR0CxcrKakRBedX2UKGgGaAloD0MIpddmY6Vpc0CUhpRSlGgVS8xoFkdAsXLIeaKDTXV9lChoBmgJaA9DCLdif9m9qnFAlIaUUpRoFUvSaBZHQLFyzSIxgzB1fZQoaAZoCWgPQwj+CpkrA7ZuQJSGlFKUaBVLvmgWR0CxcuY/7iyZdX2UKGgGaAloD0MI48eYu9YTcECUhpRSlGgVS6loFkdAsXL7gEU0vXV9lChoBmgJaA9DCCsYldSJXHJAlIaUUpRoFUu9aBZHQLFzIcKw6hh1fZQoaAZoCWgPQwjKqZ1h6hByQJSGlFKUaBVNFwFoFkdAsXMp0U47zXV9lChoBmgJaA9DCL3kf/K3fHNAlIaUUpRoFUveaBZHQLFzOZjQRf51fZQoaAZoCWgPQwid9L7x9RZyQJSGlFKUaBVLp2gWR0Cxcz1donKGdX2UKGgGaAloD0MI5SZqaS7fcUCUhpRSlGgVS8FoFkdAsXNPUYsND3V9lChoBmgJaA9DCAB0mC/v7XFAlIaUUpRoFUv7aBZHQLFzUciW3Sd1fZQoaAZoCWgPQwg4ns+AuhBxQJSGlFKUaBVL62gWR0Cxc2UrwvxpdX2UKGgGaAloD0MId0tywG40ckCUhpRSlGgVS9ZoFkdAsXOIl2NedHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1380, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fafc81ef670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fafc81ef700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fafc81ef790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fafc81ef820>", "_build": "<function ActorCriticPolicy._build at 0x7fafc81ef8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fafc81ef940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fafc81ef9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fafc81efa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fafc81efaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fafc81efb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fafc81efc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fafc81efca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fafc81e9960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673877411164881137, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI35tb3vhEs9C4TAPjrzqr5vmxy9HwY8PgAAAAAAAAAAzQG4PY4ruD2lcza+AcSxvtftyz1wS9q8AAAAAAAAAACmS2k+OQSIPsb3575GLhK/xZ4RPhLxV74AAAAAAAAAAACjozzcvwk++zrGvGxzD79AujY9T4MJPQAAAAAAAAAAzRVrPlT2mD5oytW+T4cdv2AUSD5OtYW+AAAAAAAAAADgKVO+4iBoP50YsL6wVkm/kn0Bv0bMkr0AAAAAAAAAAKa88z39xxE/HoIhPdLrb7/wD0g+2BzBvQAAAAAAAAAAzdpIvHHNVLkj3fs89Iwvs2MekDsrcmyzAACAPwAAgD8zs+C8j9pTupO61TZP0eUxxnI0Owio/rUAAIA/AACAPzMi/rwDba8/bQP+vrWFu74xgBg88NdzvQAAAAAAAAAAzbhvPI96L7paj4S5CRtktPi3uLvZh504AACAPwAAgD9mCl29wmylP/McO74dmAm/k22+vSz/H74AAAAAAAAAADO5aj7+ASM/P2ArPRXvQb9/OsQ+BscFvgAAAAAAAAAAZsKhu8OJfrp+shO8yfKIPAcgmjqeG289AACAPwAAgD8a+zO9F8mtP30wNr/ed+u+ljSoPNs87rwAAAAAAAAAAGbRcT26Aro/piJZPgu8Wb5+Ljc9jXFWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzsXf9kRnc0CUhpRSlIwBbJRLwIwBdJRHQMtci66jFhp1fZQoaAZoCWgPQwhdcAZ/v8RAQJSGlFKUaBVLa2gWR0DLXJTK5kLAdX2UKGgGaAloD0MI4NqJktCbc0CUhpRSlGgVS5loFkdAy1ydzvqkdnV9lChoBmgJaA9DCGZMwRonH3NAlIaUUpRoFUukaBZHQMtco+rdWQx1fZQoaAZoCWgPQwhJERlWMZpwQJSGlFKUaBVLp2gWR0DLXKbZpSJkdX2UKGgGaAloD0MIRIXq5mI7cUCUhpRSlGgVS5ZoFkdAy1yoOe8PF3V9lChoBmgJaA9DCJombD/ZT3FAlIaUUpRoFUusaBZHQMtcrEv0yxl1fZQoaAZoCWgPQwgD0ChdOixzQJSGlFKUaBVLuGgWR0DLXLMhzNlidX2UKGgGaAloD0MIUKbR5OIsdECUhpRSlGgVS8loFkdAy1zPgCwKSnV9lChoBmgJaA9DCNEEiljEHm9AlIaUUpRoFUucaBZHQMtcz21D0Dl1fZQoaAZoCWgPQwh1yqMboVNyQJSGlFKUaBVLiWgWR0DLXNM/nnuBdX2UKGgGaAloD0MITfT5KGNAc0CUhpRSlGgVS7loFkdAy1zWWqtHQXV9lChoBmgJaA9DCM3km22uUXNAlIaUUpRoFUu2aBZHQMtc2MspXp51fZQoaAZoCWgPQwhhi90+a2hxQJSGlFKUaBVLlWgWR0DLXNmYYzi0dX2UKGgGaAloD0MIPE88Z0uUdECUhpRSlGgVS79oFkdAy1zi9bHIZXV9lChoBmgJaA9DCJcbDHUYSnNAlIaUUpRoFUubaBZHQMtc5Co0hvB1fZQoaAZoCWgPQwjPLAlQ0ytzQJSGlFKUaBVLwGgWR0DLXPf/YJ3QdX2UKGgGaAloD0MIfbPNjemKcECUhpRSlGgVS5hoFkdAy1z9yjHn2nV9lChoBmgJaA9DCGRZMPFH4XJAlIaUUpRoFUu4aBZHQMtc/ffGdZt1fZQoaAZoCWgPQwi214LeG7pxQJSGlFKUaBVLumgWR0DLXQgNgBtDdX2UKGgGaAloD0MIlpaReg+gckCUhpRSlGgVS6xoFkdAy10KgqVhTnV9lChoBmgJaA9DCGCrBItDN3JAlIaUUpRoFUusaBZHQMtdDpxeb/h1fZQoaAZoCWgPQwhZFHZRNKFyQJSGlFKUaBVLu2gWR0DLXQ6e9SMtdX2UKGgGaAloD0MIoMIRpJLfckCUhpRSlGgVS7doFkdAy10dVmSQo3V9lChoBmgJaA9DCF7ZBYNrGG9AlIaUUpRoFUuWaBZHQMtdKJXyRSx1fZQoaAZoCWgPQwhBvK5f8D9yQJSGlFKUaBVLnmgWR0DLXSmL1mJ4dX2UKGgGaAloD0MI7j1cctzdb0CUhpRSlGgVS5JoFkdAy10qzQ/oq3V9lChoBmgJaA9DCM3n3O26pnJAlIaUUpRoFUupaBZHQMtdLyKFZgZ1fZQoaAZoCWgPQwg+IqZEEmxxQJSGlFKUaBVLrGgWR0DLXTcu3+dcdX2UKGgGaAloD0MIeSRens5CcUCUhpRSlGgVS65oFkdAy106yP+4snV9lChoBmgJaA9DCNW0i2kmi3JAlIaUUpRoFUuxaBZHQMtdRl6zE751fZQoaAZoCWgPQwg/NzRl52tyQJSGlFKUaBVLvGgWR0DLXUtc8kledX2UKGgGaAloD0MIh/vIrclHdECUhpRSlGgVS65oFkdAy11bAymALHV9lChoBmgJaA9DCLXAHhMpyG5AlIaUUpRoFUuYaBZHQMtdXtrj5sV1fZQoaAZoCWgPQwhAMbJkDkpwQJSGlFKUaBVLrWgWR0DLXWBaaCtjdX2UKGgGaAloD0MI4xbzc8Nuc0CUhpRSlGgVS59oFkdAy11lP9kz43V9lChoBmgJaA9DCDsA4q4eZXNAlIaUUpRoFUu8aBZHQMtdaPZ7HAB1fZQoaAZoCWgPQwgBpDZxMtpxQJSGlFKUaBVLrGgWR0DLXXBxiobXdX2UKGgGaAloD0MIycaDLfZxc0CUhpRSlGgVS7hoFkdAy112yFfzBnV9lChoBmgJaA9DCPG76ZbdrXJAlIaUUpRoFUuqaBZHQMtde8TrVvx1fZQoaAZoCWgPQwjZs+cyNS5xQJSGlFKUaBVLnWgWR0DLXYHFUADJdX2UKGgGaAloD0MIHVa45WN8cUCUhpRSlGgVS5poFkdAy12EWUKRdXV9lChoBmgJaA9DCJBKsaPxvHFAlIaUUpRoFUuqaBZHQMtdhmCqZMN1fZQoaAZoCWgPQwh6VtKKb0tyQJSGlFKUaBVLq2gWR0DLXYfegte2dX2UKGgGaAloD0MIcHmsGVkacECUhpRSlGgVS5RoFkdAy12MTAWSEHV9lChoBmgJaA9DCNRfr7CgVnJAlIaUUpRoFUuhaBZHQMtdj61b7j11fZQoaAZoCWgPQwjyttJrs2tzQJSGlFKUaBVLsGgWR0DLXaxVKf4AdX2UKGgGaAloD0MIt2J/2b2jcUCUhpRSlGgVS59oFkdAy12wkVvddnV9lChoBmgJaA9DCLVQMjm1TXJAlIaUUpRoFUuOaBZHQMtdtR3u/lB1fZQoaAZoCWgPQwhZ+WUwRph0QJSGlFKUaBVLzWgWR0DLXbhMrVe8dX2UKGgGaAloD0MIhZZ1/xhfckCUhpRSlGgVS5FoFkdAy12+5AhStXV9lChoBmgJaA9DCDykGCBRAXJAlIaUUpRoFUunaBZHQMtdv+8XenB1fZQoaAZoCWgPQwgNUYU/g4txQJSGlFKUaBVLuGgWR0DLXcLaGpMpdX2UKGgGaAloD0MIb4CZ72CJcUCUhpRSlGgVS45oFkdAy13Dx+az/3V9lChoBmgJaA9DCCnqzD2k/XJAlIaUUpRoFUu2aBZHQMtdw2A5Jbt1fZQoaAZoCWgPQwgYB5eOeQxxQJSGlFKUaBVLlmgWR0DLXdeZqmCRdX2UKGgGaAloD0MIQkEpWjnxc0CUhpRSlGgVS7RoFkdAy13mrf+CLHV9lChoBmgJaA9DCA02dR5VEnJAlIaUUpRoFUuvaBZHQMtd6vOpsGh1fZQoaAZoCWgPQwhVhQZi2Wd0QJSGlFKUaBVLyGgWR0DLXet/jKgadX2UKGgGaAloD0MIgpGXNXEwckCUhpRSlGgVS6RoFkdAy13tVsDW9XV9lChoBmgJaA9DCKeSAaCKwXJAlIaUUpRoFUu4aBZHQMtd7sQ2/BZ1fZQoaAZoCWgPQwjXNO84xflxQJSGlFKUaBVLs2gWR0DLXfKwt8NQdX2UKGgGaAloD0MIQInPnSDGckCUhpRSlGgVS6ZoFkdAy14V1schknV9lChoBmgJaA9DCAeynlo9cnFAlIaUUpRoFUupaBZHQMteG1vMr3F1fZQoaAZoCWgPQwha9E4F3M9wQJSGlFKUaBVLtWgWR0DLXhsx46fbdX2UKGgGaAloD0MIpx/URQqCdECUhpRSlGgVS8NoFkdAy14fHlOoHnV9lChoBmgJaA9DCJ5eKcsQr3JAlIaUUpRoFUudaBZHQMteIBvze411fZQoaAZoCWgPQwhtb7ckx0ZyQJSGlFKUaBVLtmgWR0DLXinpljEvdX2UKGgGaAloD0MIKZXwhB4ic0CUhpRSlGgVS7VoFkdAy14tSqlxfnV9lChoBmgJaA9DCG+e6pCbl3RAlIaUUpRoFUvIaBZHQMteNInjQzF1fZQoaAZoCWgPQwj4F0Fjpu1yQJSGlFKUaBVLymgWR0DLXjk3IdU9dX2UKGgGaAloD0MI2/tUFVqOcECUhpRSlGgVS4ZoFkdAy1474Z/CqXV9lChoBmgJaA9DCNLGEWtxT3JAlIaUUpRoFUuTaBZHQMteQB2GIsR1fZQoaAZoCWgPQwh7FRkdEKNyQJSGlFKUaBVLtmgWR0DLXkGokzGhdX2UKGgGaAloD0MI1PAtrBuPcUCUhpRSlGgVS65oFkdAy15OVSn+AHV9lChoBmgJaA9DCEw1s5YCD3NAlIaUUpRoFUu4aBZHQMteUBNM4951fZQoaAZoCWgPQwifrYODfRJzQJSGlFKUaBVLu2gWR0DLXld1ZDArdX2UKGgGaAloD0MIfa1LjRDXckCUhpRSlGgVS7xoFkdAy15dMt9QXXV9lChoBmgJaA9DCGB2Tx4WY3FAlIaUUpRoFUulaBZHQMteeZwn6VN1fZQoaAZoCWgPQwi6FFeV/ShzQJSGlFKUaBVLh2gWR0DLXnp3kgfVdX2UKGgGaAloD0MIhcyVQfUKdECUhpRSlGgVS7hoFkdAy16A7pV0cXV9lChoBmgJaA9DCEHyzqEMXHFAlIaUUpRoFUupaBZHQMtegJaiblR1fZQoaAZoCWgPQwhBZJEmXuJzQJSGlFKUaBVLqWgWR0DLXoHNHH3ldX2UKGgGaAloD0MIRpiiXJprc0CUhpRSlGgVS8NoFkdAy16M3hn8K3V9lChoBmgJaA9DCETecvXjqnNAlIaUUpRoFUu3aBZHQMtek8an7551fZQoaAZoCWgPQwhKXp1jwHhwQJSGlFKUaBVLnWgWR0DLXpV0xM37dX2UKGgGaAloD0MIizcyj7xxc0CUhpRSlGgVS61oFkdAy16ZHU+cIHV9lChoBmgJaA9DCGsr9pfda3BAlIaUUpRoFUuXaBZHQMtemn6l+E11fZQoaAZoCWgPQwhcc0f/SzhzQJSGlFKUaBVLvGgWR0DLXqjDsMRZdX2UKGgGaAloD0MIo1aYvlcjc0CUhpRSlGgVS6RoFkdAy16t8BuGbnV9lChoBmgJaA9DCN/CuvFuV3JAlIaUUpRoFUujaBZHQMterylFc6h1fZQoaAZoCWgPQwjzABb5dYRyQJSGlFKUaBVLw2gWR0DLXrCT4cm0dX2UKGgGaAloD0MIrMWnAJiucUCUhpRSlGgVS6hoFkdAy164uq3mWHV9lChoBmgJaA9DCPdbO1GSRXJAlIaUUpRoFUuFaBZHQMtew4cm0E51fZQoaAZoCWgPQwgNNJ9zNydyQJSGlFKUaBVLtmgWR0DLXsSbUgB+dX2UKGgGaAloD0MIj3Ba8CI4cECUhpRSlGgVS41oFkdAy17M48U21nV9lChoBmgJaA9DCLxcxHciBnFAlIaUUpRoFUudaBZHQMte1XiR4hV1fZQoaAZoCWgPQwjyP/m7dzFyQJSGlFKUaBVLnmgWR0DLXta704BFdX2UKGgGaAloD0MIOBH92npicUCUhpRSlGgVS4doFkdAy17hVBD5TXV9lChoBmgJaA9DCMr5Yu8FwHJAlIaUUpRoFUu7aBZHQMte4QoTfzl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9180, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 30, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 261.8116282597674, "std_reward": 35.61764245590965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T15:13:52.494626"}
 
1
+ {"mean_reward": 301.76590447870916, "std_reward": 13.829639823897425, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T17:52:30.814534"}