File size: 4,462 Bytes
d4bc35b
20c96be
f1b5cba
d4bc35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20c96be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00c303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4bc35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
- pt
license: mit
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bertimbau-base-lener_br
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: lener_br
      type: lener_br
      args: lener_br
    metric:
      name: Accuracy
      type: accuracy
      value: 0.9692504609383333
model-index:
- name: Luciano/bertimbau-base-lener_br
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9824282794418222
      verified: true
    - name: Precision
      type: precision
      value: 0.9877557596262284
      verified: true
    - name: Recall
      type: recall
      value: 0.9870401674313772
      verified: true
    - name: F1
      type: f1
      value: 0.9873978338768773
      verified: true
    - name: loss
      type: loss
      value: 0.11542011797428131
      verified: true
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9692504609383333
      verified: true
    - name: Precision
      type: precision
      value: 0.9786866842043531
      verified: true
    - name: Recall
      type: recall
      value: 0.9840619998315222
      verified: true
    - name: F1
      type: f1
      value: 0.9813669814173863
      verified: true
    - name: loss
      type: loss
      value: 0.22302456200122833
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bertimbau-base-lener_br

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2298
- Precision: 0.8501
- Recall: 0.9138
- F1: 0.8808
- Accuracy: 0.9693

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0686        | 1.0   | 1957  | 0.1399          | 0.7759    | 0.8669 | 0.8189 | 0.9641   |
| 0.0437        | 2.0   | 3914  | 0.1457          | 0.7997    | 0.8938 | 0.8441 | 0.9623   |
| 0.0313        | 3.0   | 5871  | 0.1675          | 0.8466    | 0.8744 | 0.8603 | 0.9651   |
| 0.0201        | 4.0   | 7828  | 0.1621          | 0.8713    | 0.8839 | 0.8775 | 0.9718   |
| 0.0137        | 5.0   | 9785  | 0.1811          | 0.7783    | 0.9159 | 0.8415 | 0.9645   |
| 0.0105        | 6.0   | 11742 | 0.1836          | 0.8568    | 0.9009 | 0.8783 | 0.9692   |
| 0.0105        | 7.0   | 13699 | 0.1649          | 0.8339    | 0.9125 | 0.8714 | 0.9725   |
| 0.0059        | 8.0   | 15656 | 0.2298          | 0.8501    | 0.9138 | 0.8808 | 0.9693   |
| 0.0051        | 9.0   | 17613 | 0.2210          | 0.8437    | 0.9045 | 0.8731 | 0.9693   |
| 0.0061        | 10.0  | 19570 | 0.2499          | 0.8627    | 0.8946 | 0.8784 | 0.9681   |
| 0.0041        | 11.0  | 21527 | 0.1985          | 0.8560    | 0.9052 | 0.8799 | 0.9720   |
| 0.003         | 12.0  | 23484 | 0.2204          | 0.8498    | 0.9065 | 0.8772 | 0.9699   |
| 0.0014        | 13.0  | 25441 | 0.2152          | 0.8425    | 0.9067 | 0.8734 | 0.9709   |
| 0.0005        | 14.0  | 27398 | 0.2317          | 0.8553    | 0.8987 | 0.8765 | 0.9705   |
| 0.0015        | 15.0  | 29355 | 0.2436          | 0.8543    | 0.8989 | 0.8760 | 0.9700   |


### Framework versions

- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.3