File size: 4,462 Bytes
d4bc35b 20c96be f1b5cba d4bc35b 20c96be e00c303 d4bc35b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
language:
- pt
license: mit
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bertimbau-base-lener_br
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
args: lener_br
metric:
name: Accuracy
type: accuracy
value: 0.9692504609383333
model-index:
- name: Luciano/bertimbau-base-lener_br
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9824282794418222
verified: true
- name: Precision
type: precision
value: 0.9877557596262284
verified: true
- name: Recall
type: recall
value: 0.9870401674313772
verified: true
- name: F1
type: f1
value: 0.9873978338768773
verified: true
- name: loss
type: loss
value: 0.11542011797428131
verified: true
- task:
type: token-classification
name: Token Classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9692504609383333
verified: true
- name: Precision
type: precision
value: 0.9786866842043531
verified: true
- name: Recall
type: recall
value: 0.9840619998315222
verified: true
- name: F1
type: f1
value: 0.9813669814173863
verified: true
- name: loss
type: loss
value: 0.22302456200122833
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertimbau-base-lener_br
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2298
- Precision: 0.8501
- Recall: 0.9138
- F1: 0.8808
- Accuracy: 0.9693
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0686 | 1.0 | 1957 | 0.1399 | 0.7759 | 0.8669 | 0.8189 | 0.9641 |
| 0.0437 | 2.0 | 3914 | 0.1457 | 0.7997 | 0.8938 | 0.8441 | 0.9623 |
| 0.0313 | 3.0 | 5871 | 0.1675 | 0.8466 | 0.8744 | 0.8603 | 0.9651 |
| 0.0201 | 4.0 | 7828 | 0.1621 | 0.8713 | 0.8839 | 0.8775 | 0.9718 |
| 0.0137 | 5.0 | 9785 | 0.1811 | 0.7783 | 0.9159 | 0.8415 | 0.9645 |
| 0.0105 | 6.0 | 11742 | 0.1836 | 0.8568 | 0.9009 | 0.8783 | 0.9692 |
| 0.0105 | 7.0 | 13699 | 0.1649 | 0.8339 | 0.9125 | 0.8714 | 0.9725 |
| 0.0059 | 8.0 | 15656 | 0.2298 | 0.8501 | 0.9138 | 0.8808 | 0.9693 |
| 0.0051 | 9.0 | 17613 | 0.2210 | 0.8437 | 0.9045 | 0.8731 | 0.9693 |
| 0.0061 | 10.0 | 19570 | 0.2499 | 0.8627 | 0.8946 | 0.8784 | 0.9681 |
| 0.0041 | 11.0 | 21527 | 0.1985 | 0.8560 | 0.9052 | 0.8799 | 0.9720 |
| 0.003 | 12.0 | 23484 | 0.2204 | 0.8498 | 0.9065 | 0.8772 | 0.9699 |
| 0.0014 | 13.0 | 25441 | 0.2152 | 0.8425 | 0.9067 | 0.8734 | 0.9709 |
| 0.0005 | 14.0 | 27398 | 0.2317 | 0.8553 | 0.8987 | 0.8765 | 0.9705 |
| 0.0015 | 15.0 | 29355 | 0.2436 | 0.8543 | 0.8989 | 0.8760 | 0.9700 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.3
|